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Abstract— Legged robots are physically capable of navigating
a diverse variety of environments and overcoming a wide range
of obstructions. For example, in a search and rescue mission, a
legged robot could climb over debris, crawl through gaps, and
navigate out of dead ends. However, the robot’s controller needs
to respond intelligently to such varied obstacles, and this requires
handling unexpected and unusual scenarios successfully. This
presents an open challenge to current learning methods, which
often struggle with generalization to the long tail of unexpected
situations without heavy human supervision. To address this
issue, we investigate how to leverage the broad knowledge
about the structure of the world and commonsense reasoning
capabilities of vision-language models (VLMs) to aid legged
robots in handling difficult, ambiguous situations. We propose
a system, VLM-Predictive Control (VLM-PC), combining two
key components that we find to be crucial for eliciting on-
the-fly, adaptive behavior selection with VLMs: (1) in-context
adaptation over previous robot interactions and (2) planning
multiple skills into the future and replanning. We evaluate VLM-
PC on several challenging real-world obstacle courses, involving
dead ends and climbing and crawling, on a Go1 quadruped
robot. Our experiments show that by reasoning over the history
of interactions and future plans, VLMs enable the robot to
autonomously perceive, navigate, and act in a wide range of
complex scenarios that would otherwise require environment-
specific engineering or human guidance.

I. INTRODUCTION

Robots deployed in open-world environments must be able
to handle highly unstructured and complicated environments.
This is particularly the case for legged robots, which may need
to operate in an extremely diverse range of circumstances.
Consider a quadruped robot tasked with performing search
and rescue in a collapsed building. This robot faces a long tail
of different possible environments and obstacles, which might
require climbing over debris, crawling through gaps, and
backtracking and navigating out of dead ends without a map.
Handling these diverse real-world scenarios autonomously,
without detailed human guidance and specific skill directives,
remains a significant challenge. Prior work in locomotion has
endowed legged robots with agile skills like running, climbing,
and crawling [1], [2], but possessing these skills alone does
not solve the problem of fully autonomous deployment. To
handle complex, unstructured scenarios, a robot must be
able to decide how to deploy its repertoire of skills with a
nuanced understanding of its situation. Consider the example
of clearing a novel obstacle like debris in a collapsed building.
We expect an intelligent robot to perceive and try a skill that
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is likely to succeed, e.g., climbing. If the robot’s attempt was
unsuccessful, e.g. the debris is too slippery to climb over, the
robot should recognize this and try another strategy given
the information it has gathered, e.g. backtrack and try a new
strategy like finding a path around the log instead.

Foundation models such as vision-language models (VLMs)
have the potential to help robots handle real-world, unstruc-
tured scenarios, since they possess commonsense knowledge
acquired from diverse internet-scale image and language data.
Indeed, multiple prior works have shown how robots can
leverage knowledge in large language models (LLMs) and
VLMs for high-level planning [3]–[5] in robotic manipula-
tion. In principle, VLMs can provide high-level semantic
knowledge for legged robots as well, e.g. by identifying
obstacles or selecting high-level behaviors. However, the use
of LLMs and VLMs has been far more limited in legged
robots, compared to robotic manipulation. Furthermore, in
diverse, complex environments with obstacles where the robot
may get stuck and need to try multiple strategies to overcome,
naively prompting a VLM to output a skill may often fail due
to inaccuracies in the model’s interpretation of the scene and
subsequent inability to adapt with the robot’s environment
interactions.

In this work, we investigate how legged robots can leverage
VLMs and their general knowledge about the structure of
the world and commonsense reasoning capabilities to suggest
contextually informed behaviors based on visual inputs. We
find the following two key insights crucial for facilitating
adaptive behavior selection in complex, unstructured settings
with VLMs: (1) The robustness of VLMs in novel situations
can be greatly improved by taking into account the robot’s
interaction history, leveraging chain-of-thought reasoning [6],
[7], and (2) Prompting the model to plan multiple skills
ahead and optionally replan at each timestep is essential for
foreseeing potential failures.

Combining these insights, we propose VLM Predictive Con-
trol (VLM-PC), which can be seen as a history-conditioned
high-level analogue of visual model predictive control [8]–
[11] in skill space. With an image of the robot’s view along
with the history of interactions as input, the VLM is prompted
to generate a multi-step plan of skills. In order to choose
what plan to follow, and ultimately what skill to execute next,
the model is prompted to reason through the robot’s current
state and whether the previous existing plan made progress
on the desired task and re-plan if needed.

In our experiments, we find that leveraging VLMs in
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Fig. 1: Vision-Language Model Predictive Control (VLM-PC) enables real-world locomotion adaptation. By leveraging the commonsense
reasoning abilities of pre-trained VLMs to adaptively select behaviors, VLM-PC allows legged robots to quickly adjust strategies when
encountering a wide range of situations, even backtracking when appropriate. Center: An example trajectory of the robot tasked with
finding the red chew toy amid obstacles using VLM-PC–it first crawls under a couch, then backs out of it when it finds it is a dead end,
turns to walk around the couch, climbs over a sizeable cushion, and finally locates the toy. Bottom left: An overhead view of the trajectory
with VLM-PC. Bottom right: An example trajectory of the robot’s behavior using a VLM naively, where the robot gets stuck and cannot
adapt. Left and right: Visualization of the robot’s egocentric POV that is provided to the VLM at different points along the trial along
with excerpts of reasoning with VLM-PC at those points.

this way allows a Go1 robot to handle a range of real-
world situations that have not been tackled by prior work
in a fully autonomous manner. Across five challenging
real-world settings, one of which is shown in Figure 1,
our approach completes the target task around 30% more
successfully by leveraging in-context adaptation and multi-
step planning. Our results show that with in-context adaptation
and multi-step planning, VLM-PC can aid robot grounding for
locomotion, and that even without detailed robot grounding,
which is challenging to provide in locomotion, our approach
enables the robot to understand its environment enough to
autonomously traverse complex environments.

II. RELATED WORK
Our work tackles the issue of enabling legged robots to per-

form robustly in unstructured, unknown test-time conditions.
Traditional model-based control approaches have achieved
impressive agile locomotion [1], [12]–[17] but are not well-
equipped to navigate arbitrary, open-world environments.
Learning-based approaches hold the promise of greater
generalization capabilities, and training a single policy with
reinforcement learning (RL) has also demonstrated successful
low-level locomotion capabilities from robust walking to
jumping and bipedal walking [18]–[31]. Behind a majority of
these successes is the use of domain randomization [19], [21],
[32]–[40], which involves training the robot under a variety of
different dynamics to robustify the policy. Our work tackles
an orthogonal, complementary problem: enabling legged
robots to autonomously solve complex, partially observed
tasks given a repertoire of low-level skills (which can be
acquired through either traditional model-based approaches
or RL training). Using these skills to solve a long-horizon

task requires understanding the scene and reasoning over
the information gathered in the environment, trying different
low-level strategies, and adapting high-level plans on-the-fly
accordingly.

Prior work has also explored utilizing a repertoire of skills
to help legged robots navigate that require a combination of
distinct behaviors. For example, [41] train a policy that uses
human input via remote control to select skills, while others
have explored using learned models to choose appropriate
behaviors on-the-fly, e.g., using search in latent space [21],
[25], [42], direct inference using proprioceptive history [22],
[43], [44], prediction based on egocentric depth [24], [30],
[45], [46], or using value functions [47]. These works rely on
human supervision or domain-specific information required
to train model-based behavior selection. In contrast, our
approach represents the robot’s range of skills in language
and studies how to leverage this representation with pre-
trained VLMs using in-context reasoning to adapt on-the-fly
in complex scenarios.

Outside legged locomotion, extensive research has explored
combining prior behaviors to address long-horizon tasks,
often by training high-level policies that orchestrate learned
skills into complex behaviors [48]–[57]. Natural language
provides a simple abstraction to index these behaviors, and
using language as an abstraction for behaviors provides an
interpretable space for a high-level planner to select strategies
to try [3]–[5], [58]–[62] or to generate robot code [63],
[64]. In-context reasoning with LLMs has refined low-level
behaviors [65]–[68], improved planning with feedback [58]
and facilitated learning from human feedback [69], [70],
but these do not incorporate VLMs, which can offer rich



multimodal understanding. Recent works have begun going
beyond LLMs and incorporating VLMs for manipulation [71]–
[73] and navigation [74], [75]. Unlike these works, we focus
particularly on equipping the robot to handle unpredictable
situations where it might get stuck and need to explore
different strategies to make progress. Enabling this in a diverse
array of environments requires robust commonsense reasoning
abilities, and we study the extent to which VLMs can provide
these for legged robots.

While high-level planning in language grounding has been
studied for manipulation or navigation tasks, it has explored
far less for legged locomotion. Key works have interfaced
through foot contact patterns [76] or code [77] with LLM
planning. Our work implements a straightforward language-
skill interface for locomotion and is the first to explore
how legged robots can utilize the commonsense reasoning
capabilities of pre-trained VLMs to autonomously guide
adaptive behavior selection. In particular, the vast majority
of prior works apply LLMs zero-shot based on the current
instruction or observation; in contrast, we demonstrate that
in-context adaptation over the history of observations plays a
crucial role in compensating for the robot’s lack of grounding
in locomotion.

III. PROBLEM STATEMENT

We assume the robot has access to a set of n skills, which
are sufficient to allow the robot to traverse the environment.
Given the recent development of highly robust low-level
quadrupedal locomotion controllers via RL [22], [31], [41],
we believe this assumption to be reasonable for a wide variety
of real-world scenarios. For example, if the robot has the
ability to climb, crawl, walk forwards and backwards, and turn
in various directions, we expect that it could sequentially apply
these skills to handle a variety of situations – the challenge
then is to determine when to deploy each skill to navigate
an unseen, unstructured situation. Each skill corresponds to
a policy πi, which takes in a state s ∈ S and outputs a low-
level action u. At test time, the robot interacts in a partially
observed environment, where it receives images {I} and
must process them and output a skill and time duration δ
that executes policy πi for an amount of time δ.

We frame our problem setting as an instantiation of single-
life deployment [78], where the agent has prior behaviors and
is evaluated on a task during a “single-life” trial without any
human intervention. This setting is meant to be representative
of real settings in which a robot is autonomously deployed
without prior knowledge of the environment or any human
guidance available. In our experimental settings with legged
locomotion, this corresponds to completing a task (e.g. finding
an object) by moving in a desired direction while successfully
overcoming any obstacles in the terrain.

IV. VISION-LANGUAGE MODEL PREDICTIVE CONTROL
(VLM-PC)

Our goal is to enable legged robots to make informed
decisions that lead to effective, context-aware adaptation to
help navigate these situations autonomously and successfully.
Our central hypothesis is that many real-world situations

demand complex reasoning due to unexpected circumstances
that may be difficult to generalize to. In this section, we first
describe how we represent the robot’s skills via language to
be used then by a pre-trained VLM. We then detail how we
prompt the VLM to reason through the robot’s current state
and history of interactions to select the next skill to execute
to solve a task in unstructured environments.

A. Interfacing Robotic Locomotion Skills with VLMs

We consider generative VLMs, also known as multimodal
language models, which take as input {I, x}, including
images {I} and prompt text x and outputs text y from a
distribution over textual completions P (·|{I}, x). We label
each of the robot’s prior behaviors πi ∈ Π with a command
li, a textual description of the corresponding behavior. We
also define levels of magnitude m for each that define the
duration δli,m that πi should be executed. While there are
many ways to acquire locomotion policies, e.g., via traditional
model-based techniques or learning-based approaches, we
use the built-in controller provided by the Go1 robot. To
make these policies amenable to being used by a VLM, we
choose to represent the policies as skills (as opposed to less
interpretable, low-level actions such as joint angles or foot
contact patterns), the details of which can be found in the
Appendix on our website. For example, li could be “Climb"
or “Crawl", and m is “Small”, “Medium”, or “Large”. At
timestep T , the VLM is prompted to output high-level action
aT = (li,m), which leads to the robot executing low-level
actions ut = πi(st;mT ) for the number of seconds dictated
by mT . Through prompt engineering, we ensure that the
VLM outputs the skill and magnitude in a specified format
that allows us to extract the high-level skill command for the
robot to execute.

B. Using VLMs for Adaptive Behavior Selection
We propose a system, Vision-Language Model Predictive

Control (VLM-PC), that uses a VLM to account for these
errors and successively refine strategies, so that the robot
can autonomously adjust from strategies that fail and try
others. Summarized in Figure 2, VLM-PC combines two key
insights to effectively enable VLMs to serve as an effective
high-level policy: (1) reasoning about information gathered
by the robot in its environment and (2) selecting actions by
planning ahead and iteratively replanning during execution.
The VLM we use in all of our experiments is GPT-4o. We
tuned the prompts to take into account the setting of legged
locomotion and the limited view from the robot’s camera.
Full prompts and an example log of the VLM’s chats are
shown in the Appendix on our project website: https://
anniesch.github.io/vlm-pc/.

a) Using in-context reasoning to adapt on-the-fly.
We want the VLM to reason through the history in the envi-

ronment and the progress made with the commanded skills before
deciding on the next skill, in order to determine if the robot should
try a new strategy. As such, we include as input to the VLM an image
representing the robot’s current view along with the full history of
interactions (including the robot’s previous images and the previous
outputs of the VLM) and a prompt, i.e. the input at timestep t is
(I1, x1, y1, Iδm1

, xδm1
, yδm1

, . . . , xt−1, It, pt), which contains for
each previous query step i, each previous image Ii and prompt
xi along with VLM output yi. We then prompt the VLM to first
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Fig. 2: Vision-Language Model Predictive Control (VLM-PC). Our method uses a pre-trained VLM to provide high-level skill commands
for a legged robot to execute. Given the robot’s current view and history of interactions, the VLM is first prompted to reason through the
robot’s current state and progress with the history of commanded skills, and is then prompted to make a new multi-step plan, compare it to
the prior plan, and adjust if needed. The robot executes the first skill in the plan, and the VLM is queried again.

reason through what progress the robot has made using the history
of commands selected and the current position and orientation of
the robot.

b) Multi-step planning and execution.
Due to partial observability, there is often no clear answer

as to which skill is most appropriate for a given situation, so
planning multiple skills ahead and optionally replanning at each
timestep may help with foreseeing and recovering from unexpected
outcomes/failures. So, we use an approach akin to model predictive
control [8]–[11], wherein we prompt the VLM to produce the
immediate skill to execute by planning multiple steps lt, lt+δm ...,
lt+k, into the future and reasoning about the consequences of the
actions. This allows the VLM to foresee different possible strategies
that might be applicable to the current situation, so it may better
adjust in the future if the next chosen skill does not make progress.
To implement this, we specifically prompt the VLM to make a
multi-step plan taking into account the latest visual observation It,
compare the new plan to the prior existing plan, and use the one
that seems more applicable.

V. EXPERIMENTAL RESULTS

In this section, we study whether VLM-PC can enable a Go1
quadruped robot to tackle five challenging real-world situations
in a fully autonomous manner. Concretely, we aim to answer the
following empirical questions: (1) Can VLM-PC enable the robot
to autonomously adapt in unseen, partially observed environments
and effectively complete tasks that require reasoning over what
strategies the robot has tried in the past? (2) How much do in-context
reasoning over the robot’s experience and multi-step planning affect
the robot’s ability to complete these test settings? (3) Does including
additional in-context examples improve the robot’s ability to handle
the given setting? We first describe simulated results before the
main real world results of our experiments. For qualitative video
results, see our project webpage: https://anniesch.github.
io/vlm-pc/.

A. Real-World Experimental Setup
We use a Go1 quadruped robot from Unitree. The robot is

equipped with an Intel Realsense D435 camera mounted on its

head, which provides an egocentric view of the environment, which
is the only source of information the robot has about its surroundings.
We configure the default controller to correspond to a set of prior
behaviors: walking forward, crawling (at a low height), climbing
(which can overcome stair-height obstacles), walking backward,
turning left, and turning right. This same set of behaviors is used
for all experiments, and details of the skills are in Appendix C. In
each setting, we report the average and median wall clock time in
seconds (where lower is better) needed to complete the task along
with the success rate across five trials for each method. If the robot
does not complete the task within 100 seconds of executing actions,
we consider it a failure. For each method in each setting, we report
these metrics across five trials.

a) Evaluation Settings.

To evaluate each method, we conduct trials in five real-world
indoor and outdoor settings. The settings test the robot’s ability
to adapt to varying terrain conditions, requiring agile skills and
dynamic strategy adjustments based on new information. The goal
in each setting is to reach the “red chew toy”. The robot only
receives information from its camera and does not have access to a
map of the environment. The tasks are shown in Figure 3, annotated
with the goal and an example path through the course, and described
as follows:
Indoor 1: The robot first must crawl under a couch, determine that
it is a dead end, back up and turn to walk around the couch, climb
a cushion it cannot pass without climbing, and finally locate the toy.
Indoor 2: The robot first faces a couch that it must crawl under to
the opposite side, then faces several stools blocking its path with
a narrow gap between them, and must determine that it cannot fit
through the gap and must turn and go around to locate the red chew
toy. Outdoor 1: The robot first faces bushes that it must turn from
and go around, then faces a series of small logs that it must climb
over, and finally locates the red chew toy. Outdoor 2: The robot
first faces a series of bamboo plants that it must turn from and go
around, then a bench that it must crawl under, and then find the red
chew toy. Outdoor 3: The robot first faces a curb that it must climb
over, a dirt hill that it must walk up, a wooden plank that it must
climb over, and finally locate the red chew toy between the bushes.

https://anniesch.github.io/vlm-pc/
https://anniesch.github.io/vlm-pc/


Fig. 3: Deployment Environments. We evaluate VLM-PC on five challenging real-world settings, each of which presents unseen obstacles
designed for the robot to get stuck, and requires commonsense reasoning to solve. For each setting, we give a third-person view of the
obstacle course as well as an example path through the course, with three different egocentric views (labeled 1, 2, 3) at different points to
show the diversity of scenes the robot encounters from its viewpoint.

Method Outdoor 1 Outdoor 2 Outdoor 3

Avg (s) ↓ Median (s) ↓ Success (%) Avg (s) ↓ Median (s) ↓ Success (%) Avg (s) ↓ Median (s) ↓ Success (%)

Random 84.2 100 20 92 100 20 100 100 0
No History 82 100 20 100 100 0 49.6 17.1 60

No Multi-Step 81.5 100 20 100 100 0 57.4 42 60
VLM-PC 49.4 17 60 68.8 65.5 60 61.7 50.5 60

Method Indoor 1 Indoor 2

Avg (s) ↓ Median (s) ↓ Success (%) Avg (s) ↓ Median (s) ↓ Success (%)

Random 100 100 0 93.9 100 20
No History 100 100 0 87.9 100 20

No Multi-Step 57.2 34 60 82.9 100 40
VLM-PC 66.7 46.7 60 37.1 35.3 80

TABLE I: Results on Each Setting. We report the average and median time to complete the task (where lower is better) and success rate,
across five trials for each method in each of the five settings. VLM-PC far outperforms the comparisons across all metrics in three of the
scenes (Outdoor 1, Outdoor 2, and Indoor 2) and is comparable to the best other method in the other two scenes. Furthermore, VLM-PC is
the only method that succeeds a majority of the time in each setting.

b) Comparisons.
We compare VLM-PC to several variants that differ in the amount

of context provided to the VLM and the amount the VLM is
prompted to plan: (1) No History: The VLM is prompted with
only the current image and the prompt, and is not provided with any
history of interactions but is still prompted to output a multi-step
plan of skills at each timestep. (2) No Multi-Step: The VLM is
prompted with the full history of interactions, including the robot’s
previous images and the previous outputs of the VLM, but is only
prompted to plan a single skill at each timestep. (3) VLM-PC: The
VLM is prompted with the full history of interactions, including the
robot’s previous images and the previous outputs of the VLM, and is
prompted to make a multi-step plan of skills at each timestep. As a
baseline, we additionally compare to (4) Random, which randomly
selects a skill and magnitude to execute at each timestep.

B. Main Results
As shown in Figure 8, on average across all five settings, VLM-

PC successfully completes the task 64% of the time, almost 30%
more than the second best method (No Multi-Step), which succeeds
on average 36% of the time. VLM-PC is also on average over 20%
faster at completing the target task as the next best method, showing

that including both history and multi-step planning are important for
improving the use of these VLMs in providing high-level commands
in a variety of settings. In Figure 3, we find that particularly on
Indoor 2, Outdoor 1, and Outdoor 2, VLM-PC is more than twice
as successful as the next best method. No Multi-Step is the second
best method, and does comparably to VLM-PC (which does multi-
step planning) on Indoor 1 and Outdoor 3, indicating that in some
situations, multi-step planning does not significantly help, although
it does not hurt performance. No History fails in almost every setting
except Outdoor 3, as it often gets stuck behind obstacles that require
trying multiple different strategies. Random fails in every setting,
showing that each setting requires nontrivial reasoning for the robot
to succeed. One key insight from these results is the finding that
in-context adaptation aids robot grounding for locomotion, allowing
the robot to ground sufficiently well to achieve a high success rate
at the given tasks, even without detailed understanding of each skill.

C. Adding Labeled In-Context Examples Can Improve Per-
formance

As large foundation models trained on Internet-scale data are
used as these high level planners, they can leverage in-context
learning, where examples or instructions are included as context in



Fig. 4: Main Results Averaged Across Settings. Across all five settings on average, VLM-PC significantly outperforms Random, No
History, and No Multi-Step on average and median time to complete the task and success rate, performing roughly 30% more successfully
than the next best method.

Course Method Avg time (s) Median time (s) Success Rate (%)

Indoor 2 VLM-PC 37.1 35.3 80
VLM-PC + IC 13.5 13.7 100

Outdoor 1 VLM-PC 49.4 17.0 60
VLM-PC + IC 10.0 10.0 100

Fig. 5: VLM-PC with Labeled In-Context Examples. We find that
in two of the obstacle courses, leveraging the VLM’s in-context
learning capabilities by providing additional images labeled with
the best command can significantly improve performance.

the input to the model [79], [80]. We provide an extension of our
method including in-context examples, called VLM-PC+IC, where
we include in the first prompt several additional images, taken from
the egocentric view at different points in the environment, as well
as a label for each of them with the best command to take. This
provides the VLM with more context about the environment and
the best strategies to take at key points. As shown in Table 5,
we find that in two of the obstacle courses, this can significantly
improve performance. While inexpensive to obtain, this does require
human labeling of several images from the deployment environment
with the best command to take, which may not be feasible in all
deployment settings. Nonetheless, this extension further reinforces
the importance of providing useful context to the VLM and having
it use this context to make informed decisions, and shows that these
labeled examples can be useful context on top of the history of
experiences in the environment.

D. Results in a Controlled Simulated Setting
In order to more easily compare against more methods, we

additionally evaluate in a controlled simulated setting, built off
of the legged_gym repo by [81], where the robot finds itself in a
dead end, must back up out of it, turn and walk up stairs, shown
in Figure 8. We give the robot the same skills as in the real world
setting. In addition to comparing to No History and No Multi-Plan,
we compare to two additional methods: (1) High-Level Classifier
(HLC), which trains a classifier on the oracle skill to use in different
obstacles and uses it to select which skill to use at a given state,
similar to work by [82], and (2) Distillation [30], [31] from oracle
actions in training environments. Note that both of these methods
require extra human labeling on oracle skills at different states
during training and are challenging to implement effectively on the
real robot.

In Table IV, we find that similar to our conclusions in our real-
world experiments, VLM-PC significantly outperforms both existing
methods. In particular, we find that VLM-PC is able to reason
through to solve the task much more effectively than HLC and
Distillation, despite requiring less human supervision, as it is able to
reason over previous attempts and efficiently recover from mistakes.
For more details on this setting, see the Appendix on our website.

Fig. 6: Simulated Evaluation Environment. We evaluate VLM-PC
along with several comparisons from prior work in a challenging
simulated setting, where the robot must back out or avoid the dead
end, turn accordingly, and climb the stairs.

Method Random No-Hist No-Plan VLM-PC HLC Distill

Success (%) 7.1 28.6 50 64.3 28.6 7.0

TABLE II: Results in Simulation. VLM-PC outperforms all com-
parisons in our controlled simulated setting.

VI. DISCUSSION AND LIMITATIONS
We introduced Vision-Language Model Predictive Control (VLM-

PC), which enables legged robots to rapidly adapt to changing,
unseen circumstances during deployment. On a Go1 quadruped robot,
we find that VLM-PC can autonomously handle a range of complex
real-world tasks involving climbing over obstacles, crawling under
furniture, and navigating around dead ends and through cluttered
environments. While VLM-PC is promising solution for enabling
legged robots to handle new tasks, there remains much left to
explore regarding how to best leverage VLMs for adaptive behavior
for legged robots, especially as core VLM capabilities continue to
improve. First, improving language grounding for locomotion to
better capture the nuances of the robot’s capabilities could lead
to more effective decision-making. It would also be interesting
to explore if fine-tuning these VLMs, perhaps with techniques
like reinforcement learning from human feedback, can lead to
more efficient reasoning. Incorporating more sensors or scene
reconstruction could provide a more comprehensive view of the
environment, allowing the VLM to reason more effectively. Finally,
it would be interesting to explore how to use VLMs to combine
high-level planning for locomotion with that for manipulation, to
enable robots to handle a wider range of tasks.
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APPENDIX

We provide examples of typical interactions with the VLM in Figure 7 without history, without multi-step planning, compared to
VLM-PC, and we find that with ours, the VLM is able to both reason through effectiveness of prior strategies and plan ahead to try
coherent new strategies to overcome the current obstacle.

Fig. 7: Typical VLM Interactions. With VLM-PC (Right), the VLM can both analyze the efficacy of previous commands and prepare new,
coherent plans to tackle the current obstacle, by combining benefits from multi-step planning from No History (Left) and reasoning over
history from No Multi-Step (Center).

A. Additional Experimental Results in a Controlled Simulated Setting
In addition to the main results using VLM controllers, we also test our VLM controllers against other common non-VLM based baselines

in a simulated environment requiring commonsense decisions on what low-level policy to use.
The test environment, a forked version of the legged_gym repo by [81], requires the robot to use all of its abilities: first moving forward,

seeing no way out, then backing up and turning out of the dead end, and finally climbing stairs to get to the goal location. We record the
success rate of the robot getting out of the dead end (henceforth “first success rate") as well as the success rate of the robot in completing
the obstacle course (henceforth “final success rate"). To evaluate the effectiveness of various prompting methods, we also compare our
vanilla VLM-PC prompt to one which is substantially longer to include more detail about all possible skills (VLM-PC Detail).

Fig. 8: Simulated Evaluation Environment.
We added comparisons to two prior methods that do not use VLMs: a learned high-level classifier and distillation [30], [31] from oracle

actions in training environments. The training environments have the robot initialized in an environment with just one obstacle, rather than
the full environment, with oracle actions to move through the environment. The training environments include a stairs environment to
climb, a gap environment to jump over, a dead end to walk into to explore, go right or left to avoid, or back out of, and a wall to go right
or left to get around or back up away from. The high-level classifier is henceforth referred to as HLC.Over 1200 episodes of data were
used to train the HLC. At test time, the HLC was queried every 40 timesteps.

The distilled policy was trained with new episodes being continuously generated. At each timestep, a random choice to execute the
actions from the expert policy or the student policy to step the simulation was made. Initially, the teacher policy was used to generate
actions 99% of the time. Over the course of training, this was exponentially decayed to 2% (this factor was reduced by .1% each batch of
32 timestep). No matter which policy was used to generate the trajectory at each timestep, the expert policy’s actions in each state were
generated to train the student policy.

For the high-level classifier, we used a CNN architecture with three convolutional layers with 3x3 kernel size, separated by max-pool
followed by two convolutional layers, which is optimized via cross-entropy loss on the correct high-level action for the given image. For our
distilled policy, we use the same CNN as an image encoder, and concatenate the image to an embedding (generated by a 2-layer MLP) of



other robot observations such as proprioceptive data. A final 2-layer MLP takes in the concatenated embeddings and outputs the appropriate
actions. This policy is trained to minimize MSE loss with the exact actions taken by the low-level policy. Model hyperparameters are
provided below:

TABLE III: Layer Sizes for HLC/Distillation

Image Embedding (Both)
Image Input 128x128, 4 channel
CNN Kernel 3x3
CNN Stride [2, 2, 1]
CNN Pooling MaxPool
MLP Output Size [512, 6]

Observation Embedding (Distill Only)
Observation Input 235
MLP Output Size [256, 128]

Final MLP (Distill Only)
MLP Output Size [256, 12]

We run 14 trials with each method up to 1500 simulated steps, which is more than enough for the robot to succeed or fail. We exclude
trials where the policy fails due to problems with the simulation or low-level issues (e.g. if the robot trips itself), to purely evaluate
how well the high-level policy can choose a best course of action. In Table IV, we find that similar to our conclusions in our real-world
experiments, VLM-PC significantly outperforms both existing methods. In particular, we find that VLM-PC is able to reason through to
solve the task much more effectively than HLC and distillation, as it is able to reason over previous attempts and efficiently recover from
mistakes.

Method Random VLM No-Hist VLM No-Plan VLM-PC VLM-PC Detail HLC Distill

First Success (%) 21.4 28.6 100 92.9 92.9 42.9 14
Final Success (%) 7.1 28.6 50 64.3 35.7 28.6 7.0

TABLE IV: Comparison of Simulated Methods.

B. Comparison to human oracle
Here, we ran the outdoor experiments using the controller to pilot the robot’s default policy to explore each environment for the end

objective. We have added an oracle expert demonstration, where a human operator replaces the VLM but receives the same inputs and
commands the same outputs, on our three outdoor environments. As expected, the robot is able to complete the task more quickly and
successfully. In Table V, we find that a human controlling the robot with only egocentric data can easily solve the setting in the time
allotted. However, unlike VLM-PC, this requires heavy human supervision throughout deployment time.

Method Outdoor 1 Outdoor 2 Outdoor 3

Avg (s) ↓ Median (s) ↓ Success (%) Avg (s) ↓ Median (s) ↓ Success (%) Avg (s) ↓ Median (s) ↓ Success (%)

VLM-PC 49.4 17 60 68.8 65.5 60 61.7 50.5 60
Human Oracle 17.8 18.2 100 21.8 21.5 100 36.4 34.5 100

TABLE V: VLM-PC Comparison to Human Oracle.

C. Skill Details and Hyperparameters
We obtain different behaviors from the default controller by modulating the parameters passed in. Specifically, we control x- and

y-velocity in the robot frame, gait type, body height, yaw speed, and duration to achieve different skills. The parameters used for each skill
are described in the tables below, along with the duration corresponding to each magnitude. After the action is done executing, the robot
will stay frozen in the position it was left in at the end of the last action, e.g. if the last action was to crawl, the robot will stay low to the
ground. We additionally provide our GPT-4o query hyperparameters.

D. Prompts and Logs
In the following, we include the prompts used for VLM-PC, where the text highlighted in grey indicates text that is used for all

comparison methods (including No History and No Multi-Step Plan). The text in green corresponds to the prompting for reasoning
over history and is included in VLM-PC and the No Multi-Step Plan prompts. The text highlighted in blue corresponds to prompting
for multi-step planning, which is included in VLM-PC and No History. The text in yellow corresponds to reasoning over the historical
multi-step plan and is included only in the full VLM-PC prompt. When included, the ICL prompt went immediately after the first paragraph
of the initial prompt and consisted of a short explanation followed by example egocentric views and one or two actions the robot might
take when it each view. For VLM-PC and No Multi-Step Plan methods, the “Initial Prompt” below was given at the start and repeated
after every six responses. Otherwise the “Successive Prompt” was given in all queries after the first. Note that we used GPT-4o as the
VLM for all of our experiments, and additional prompt tuning may be necessary for other VLMs. Anecdotally, we tried using the Gemini
Flash model and found that it did not reason as effectively with these prompts.



In the pages afterward, we display a full example log with VLM-PC on the Outdoor 2 obstacle course, where the prompts and input
images are included in blue and the output of the VLM at each step is included in green. See our anonymous website for videos of our
results.



Initial Prompt: 
 
You are controlling a robot dog to get through obstacles in this scene. The 
robot dog is the size of a golden retriever. The goal is to make forward 
progress in this starting direction and arrive at the location of a red chew 
toy on the other side of the obstacles in front of you. After each action you 
command the robot to take, you will be given a new image taken from the head 
of the robot dog. Each time you receive an image, you must command one of the 
following six actions: Walk, Crawl, Left, Right, Backward, Climb. You should 
command Crawl when it should go under an obstacle, command Climb when it 
should go over the obstacle. Examples of obstacles the robot can safely Climb 
over include stairs, small suitcases, cushions, small logs, and small boxes. 
Do not try to Crawl under these. Examples of obstacles the robot can safely 
Crawl under include furniture (if there is sufficient space) and suspended 
tree branches. Do not try to Climb furniture and suspended tree branches. 
Command Left when it should go left to get around an obstacle, and Right when 
it should go right to get around the obstacle. Right/Left command inplace 
turns, meaning that the robot will change the direction it is facing but not 
its position. This means that if you command a turn, you need to move 
forwards in order to move in the new direction. Do not try to turn Left or 
Right when you confidently believe you are underneath or above an obstacle. 
You should command the robot Backward if the camera is obscured 
and it is not clear what other action to take. If there is space to walk 
forward in front of you, you should command Walk. If you ever command 
Backward, do not try to do the same action you did before you commanded 
Backward again immediately (you may do so later once you are in a different 
scenario). If it is possible to go under the obstacle, try to Crawl, and if 
it is possible to go over an obstacle, try to Climb, but only if it seems 
like a clear path after the obstacle. If not, it might be a dead end and it 
might be better to move Backward. Keep in mind that the camera is on the head 
of the robot, and the whole body of the robot is 3 feet behind and also needs 
to clear the obstacle. Even if the camera view is clear, the body of the 
robot might be stuck: in these cases, consider Backward or repeating the same 
action as before. The task can be completed with the right sequence of 
actions, so if the robot is not succeeding, you should use the history of 
actions and experiences to figure out why and command different actions. When 
you chose Walk, Crawl, or Climb, you will move directly forward, so you may 
want to slightly turn to make sure you will move in the right direction 
before doing so.  

In your first response, describe a multi-step plan using the available 
actions specified above for completing the task and give reasons that plan 
might fail. At each subsequent step, the beginning of your response should 
use the state of the robot, including its current position and orientation, 
to reason through what progress the robot has made with the plan. You should 
reconsider your multi-step plan of actions to take, keeping in mind the 
history of what actions you have selected and the progress in the scene. If 
the plan seems to be working, keep following actions from that plan. If an 
action from the plan does not seem to be working, either revise the plan or 
try a making a new multi-step plan with different actions. For example, if 
you have had many tries of Climbing over an obstacle and the robot is unable 
to make reliable forward progress, you might want to try going Backward or 
Crawling or going Left or Right around the obstacle.  

Each time you give a response, the third to last word of your response 
should be a yes or no indicating whether progress was made on the prior state 
with the previous command. The second to last word of your output should be 
the action to take. The last word of your response should be a magnitude 



(Small, Medium, Large) that specifies how much of that action to take. For 
Right or Left commands, magnitude Small corresponds to turning that direction 
a full camera view amount. For other commands, magnitude Small corresponds to 
taking that action for around one second. Once again, the last three* words 
of your response must be in the format yes/no Walk/Crawl/Left/Right/Backward/ 
Climb Small/Medium/Large. 
 
 
Successive Prompt: 
 
Based on your last action, the robot has moved. Here is what the robot 
currently sees. If the view is exactly the same as before, this is likely 
because your last action was not appropriate for this situation and the body 
of the robot is probably stuck (maybe because of an unobserved obstacle). 
Keep in mind that this is the view from the head of the robot. Even if the 
camera view is clear, the body of the robot might be stuck. In these cases, 
consider Backward. Remember your ultimate objective of making progress in the 
direction the robot initially started in so that you eventually arrive at the 
red chew toy. Use the state of the robot including its current position and 
orientation to reason through what progress the robot has made with the plan. 
You should reconsider your multi-step plan of actions to take, keeping in 
mind the history of what actions you have selected and the progress in the 
scene. If the plan** is working well, keep following actions from that plan, 
making slight adjustments if necessary. If the plan** is not working, try a 
new multi-step plan with different actions. For example, if you had many 
tries of Climbing over an obstacle and the robot is unable to make reliable 
forward progress, you might want to try going Backward or Crawling or going 
Left or Right around the obstacle. End your response with the first action in 
the chosen plan and a magnitude in the format specified earlier. 
 
 
*For No History: “two” 
**For No Multi-Step Plan: “your old sequence of actions” 
 
 
 
 
 



You	are	controlling	a	robot	dog	to	get	through	obstacles	in	this	scene.	The	robot
dog	is	the	size	of	a	golden	retriever.	The	goal	is	to	make	forward	progress	in	this
starting	direction	and	arrive	at	the	location	of	a	red	chew	toy	on	the	other	side	of

the	obstacles	in	front	of	you.	After	each	action	you	command	the	robot	to	take,
you	will	be	given	a	new	image	taken	from	the	head	of	the	robot	dog.	Each	time

you	receive	an	image,	you	must	command	one	of	the	following	six	actions:	Walk,
Crawl,	Left,	Right,	Backward,	Climb.	You	should	command	Crawl	when	it	should

go	under	an	obstacle,	command	Climb	when	it	should	go	over	the	obstacle.
Examples	of	obstacles	the	robot	can	safely	Climb	over	include	stairs,	small

suitcases,	cushions,	small	logs,	and	small	boxes.	Do	not	try	to	Crawl	under	these.
Examples	of	obstacles	the	robot	can	safely	Crawl	under	include	furniture	(if	there

is	sufficient	space)	and	suspended	tree	branches.	Do	not	try	to	Climb	furniture
and	suspended	tree	branches.	Command	Left	when	it	should	go	left	to	get	around

an	obstacle,	and	Right	when	it	should	go	right	to	get	around	the	obstacle.
Right/Left	command	inplace	turns,	meaning	that	the	robot	will	change	the

direction	it	is	facing	but	not	its	position.	This	means	that	if	you	command	a	turn,
you	need	to	move	forwards	in	order	to	move	in	the	new	direction.	Do	not	try	to

turn	Left	or	Right	when	you	confidently	believe	you	are	underneath	or	above	an
obstacle.	You	should	command	the	robot	Backward	if	the	camera	is	obscured
and	it	is	not	clear	what	other	action	to	take.	If	there	is	space	to	walk	forward	in

front	of	you,	you	should	command	Walk.	If	you	ever	command	Backward,	do	not
try	to	do	the	same	action	you	did	before	you	commanded	Backward	again

immediately	(you	may	do	so	later	once	you	are	in	a	different	scenario).	If	it	is
possible	to	go	under	the	obstacle,	try	to	Crawl,	and	if	it	is	possible	to	go	over	an

obstacle,	try	to	Climb,	but	only	if	it	seems	like	a	clear	path	after	the	obstacle.	If
not,	it	might	be	a	dead	end	and	it	might	be	better	to	move	Backward.	Keep	in

mind	that	the	camera	is	on	the	head	of	the	robot,	and	the	whole	body	of	the	robot
is	3	feet	behind	and	also	needs	to	clear	the	obstacle.	Even	if	the	camera	view	is

clear,	the	body	of	the	robot	might	be	stuck:	in	these	cases,	consider	Backward	or
repeating	the	same	action	as	before.	The	task	can	be	completed	with	the	right

sequence	of	actions,	so	if	the	robot	is	not	succeeding,	you	should	use	the	history
of	actions	and	experiences	to	figure	out	why	and	command	different	actions.

When	you	chose	Walk,	Crawl,	or	Climb,	you	will	move	directly	forward,	so	you
may	want	to	slightly	turn	to	make	sure	you	will	move	in	the	right	direction	before

doing	so.	In	your	first	response,	describe	a	multi-step	plan	using	the	available
actions	specified	above	for	completing	the	task	and	give	reasons	that	plan	might

fail.	At	each	subsequent	step,	the	beginning	of	your	response	should	use	the
state	of	the	robot,	including	its	current	position	and	orientation,	to	reason	through

what	progress	the	robot	has	made	with	the	plan.	You	should	reconsider	your
multi-step	plan	of	actions	to	take,	keeping	in	mind	the	history	of	what	actions	you

have	selected	and	the	progress	in	the	scene.	If	the	plan	seems	to	be	working,
keep	following	actions	from	that	plan.	If	an	action	from	the	plan	does	not	seem	to

be	working,	either	revise	the	plan	or	try	a	making	a	new	multi-step	plan	with
different	actions.	For	example,	if	you	have	had	many	tries	of	Climbing	over	an
obstacle	and	the	robot	is	unable	to	make	reliable	forward	progress,	you	might

want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right	around	the
obstacle.	Each	time	you	give	a	response,	the	third	to	last	word	of	your	response
should	be	a	yes	or	no	indicating	whether	progress	was	made	on	the	prior	state

with	the	previous	command.	The	second	to	last	word	of	your	output	should	be	the
action	to	take.	The	last	word	of	your	response	should	be	a	magnitude	(Small,

Medium,	Large)	that	specifies	how	much	of	that	action	to	take.	For	Right	or	Left
commands,	magnitude	Small	corresponds	to	turning	that	direction	a	full	camera
view	amount.	For	other	commands,	magnitude	Small	corresponds	to	taking	that

action	for	around	one	second.	Once	again,	the	last	three	words	of	your	response
must	be	in	the	format	yes/no	Walk/Crawl/Left/Right/Backward/Climb

Small/Medium/Large.



Multi-Step	Plan:

1.	 Crawl	(Small):	The	robot	dog	should	crawl	under	the	bamboo	stems	in	front
of	it.	This	will	allow	it	to	make	progress	without	getting	stuck	or	needing	to
navigate	around	the	bamboo.

2.	 Walk	(Medium):	After	clearing	the	bamboo,	the	robot	dog	should	walk
forward	to	cover	more	ground	towards	the	red	chew	toy.

3.	 Left	(Small):	If	there	are	obstacles	directly	ahead,	the	robot	dog	should	turn
left	to	see	if	there	is	a	clearer	path.

4.	 Walk	(Medium):	Continue	walking	forward	if	the	path	is	clear.
5.	 Right	(Small):	If	there	are	still	obstacles,	the	robot	dog	should	turn	right	to

check	for	another	clear	path.

Reasons	the	Plan	Might	Fail:

The	bamboo	stems	might	be	too	low	or	too	close	together	for	the	robot	dog
to	crawl	under.
There	may	be	additional	obstacles	not	visible	in	the	initial	image	that	block
the	robot	dog's	path.
The	robot	dog	might	get	stuck	on	uneven	ground	or	hidden	objects	while
crawling	or	walking.

Current	Action:

Let's	begin	with	the	first	step	of	the	plan.

yes	Crawl	Small

Based	on	your	last	action,	the	robot	has	moved.	Here	is	what	the	robot	currently
sees.	If	the	view	is	exactly	the	same	as	before,	this	is	likely	because	your	last

action	was	not	appropriate	for	this	situation	and	the	body	of	the	robot	is	probably
stuck	(maybe	because	of	an	unobserved	obstacle).	Keep	in	mind	that	this	is	the

view	from	the	head	of	the	robot.	Even	if	the	camera	view	is	clear,	the	body	of	the
robot	might	be	stuck.	In	these	cases,	consider	Backward.	Remember	your

ultimate	objective	of	making	progress	in	the	direction	the	robot	initially	started	in
so	that	you	eventually	arrive	at	the	red	chew	toy.	Use	the	state	of	the	robot

including	its	current	position	and	orientation	to	reason	through	what	progress	the
robot	has	made	with	the	plan.	You	reconsider	your	new	multi-step	plan	of	actions

to	take,	keeping	in	mind	the	history	of	what	actions	you	have	selected	and	the
progress	in	the	scene.	If	the	plan	is	working	well,	keep	following	actions	from	that
plan,	making	slight	adjustments	if	necessary.	If	the	plan	is	not	working,	try	a	new

multi-step	plan	with	different	actions.	For	example,	if	you	had	many	tries	of
Climbing	over	an	obstacle	and	the	robot	is	unable	to	make	reliable	forward

progress,	you	might	want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right
around	the	obstacle.	End	your	response	with	the	first	action	in	the	chosen	plan

and	a	magnitude	in	the	format	specified	earlier.



Analysis:

The	robot	has	successfully	crawled	under	the	bamboo	stems,	as	evidenced	by
the	new	view.	The	red	chew	toy	is	now	visible	in	the	distance,	indicating	forward
progress.	However,	there	is	still	an	obstacle	in	the	form	of	a	low	platform	or	bench
ahead.	The	space	underneath	this	platform	appears	large	enough	for	the	robot	to
crawl	under.

Revised	Multi-Step	Plan:

1.	 Crawl	(Small):	Continue	crawling	forward	to	move	under	the	low	platform	or
bench.

2.	 Walk	(Medium):	Once	clear	of	the	platform,	the	robot	should	walk	forward
to	close	the	remaining	distance	to	the	chew	toy.

3.	 Left	(Small):	If	there	are	obstacles	directly	ahead,	turn	left	to	find	a	clear
path.

4.	 Walk	(Medium):	Continue	walking	forward	if	the	path	is	clear.
5.	 Right	(Small):	If	there	are	still	obstacles,	turn	right	to	check	for	another

clear	path.

Next	Action:

Let's	proceed	with	the	first	step	of	the	revised	plan.

yes	Crawl	Small

Based	on	your	last	action,	the	robot	has	moved.	Here	is	what	the	robot	currently
sees.	If	the	view	is	exactly	the	same	as	before,	this	is	likely	because	your	last

action	was	not	appropriate	for	this	situation	and	the	body	of	the	robot	is	probably
stuck	(maybe	because	of	an	unobserved	obstacle).	Keep	in	mind	that	this	is	the

view	from	the	head	of	the	robot.	Even	if	the	camera	view	is	clear,	the	body	of	the
robot	might	be	stuck.	In	these	cases,	consider	Backward.	Remember	your

ultimate	objective	of	making	progress	in	the	direction	the	robot	initially	started	in
so	that	you	eventually	arrive	at	the	red	chew	toy.	Use	the	state	of	the	robot

including	its	current	position	and	orientation	to	reason	through	what	progress	the
robot	has	made	with	the	plan.	You	reconsider	your	new	multi-step	plan	of	actions

to	take,	keeping	in	mind	the	history	of	what	actions	you	have	selected	and	the
progress	in	the	scene.	If	the	plan	is	working	well,	keep	following	actions	from	that
plan,	making	slight	adjustments	if	necessary.	If	the	plan	is	not	working,	try	a	new

multi-step	plan	with	different	actions.	For	example,	if	you	had	many	tries	of
Climbing	over	an	obstacle	and	the	robot	is	unable	to	make	reliable	forward

progress,	you	might	want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right
around	the	obstacle.	End	your	response	with	the	first	action	in	the	chosen	plan

and	a	magnitude	in	the	format	specified	earlier.



Analysis:

The	view	has	not	changed,	indicating	that	the	robot	might	be	stuck.	The	body	of
the	robot	may	not	have	cleared	the	bamboo	stems	completely	or	there	could	be
another	unseen	obstacle	behind	or	beneath	the	platform.

Revised	Multi-Step	Plan:

1.	 Backward	(Small):	Move	backward	to	ensure	the	robot	is	completely	clear
of	any	obstacles	it	might	be	stuck	on.

2.	 Crawl	(Medium):	After	moving	backward,	attempt	to	crawl	under	the
platform	again	to	ensure	the	robot	can	clear	the	obstacle.

Next	Action:

Let's	proceed	with	the	first	step	of	the	revised	plan.

no	Backward	Small

Based	on	your	last	action,	the	robot	has	moved.	Here	is	what	the	robot	currently
sees.	If	the	view	is	exactly	the	same	as	before,	this	is	likely	because	your	last

action	was	not	appropriate	for	this	situation	and	the	body	of	the	robot	is	probably
stuck	(maybe	because	of	an	unobserved	obstacle).	Keep	in	mind	that	this	is	the

view	from	the	head	of	the	robot.	Even	if	the	camera	view	is	clear,	the	body	of	the
robot	might	be	stuck.	In	these	cases,	consider	Backward.	Remember	your

ultimate	objective	of	making	progress	in	the	direction	the	robot	initially	started	in
so	that	you	eventually	arrive	at	the	red	chew	toy.	Use	the	state	of	the	robot

including	its	current	position	and	orientation	to	reason	through	what	progress	the
robot	has	made	with	the	plan.	You	reconsider	your	new	multi-step	plan	of	actions

to	take,	keeping	in	mind	the	history	of	what	actions	you	have	selected	and	the
progress	in	the	scene.	If	the	plan	is	working	well,	keep	following	actions	from	that
plan,	making	slight	adjustments	if	necessary.	If	the	plan	is	not	working,	try	a	new

multi-step	plan	with	different	actions.	For	example,	if	you	had	many	tries	of
Climbing	over	an	obstacle	and	the	robot	is	unable	to	make	reliable	forward

progress,	you	might	want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right
around	the	obstacle.	End	your	response	with	the	first	action	in	the	chosen	plan

and	a	magnitude	in	the	format	specified	earlier.



Analysis:

The	robot	has	successfully	moved	backward,	revealing	more	of	the	bamboo
stems	and	the	low	platform.	The	red	chew	toy	is	still	visible	in	the	distance.	The
robot	is	now	in	a	better	position	to	reattempt	crawling	under	the	platform.

Revised	Multi-Step	Plan:

1.	 Left	(Small):	Turn	left	to	better	align	the	robot	with	a	clearer	path	through
the	bamboo	stems.

2.	 Crawl	(Medium):	After	turning,	crawl	forward	to	move	under	the	low
platform.

3.	 Walk	(Medium):	Once	clear	of	the	platform,	walk	forward	to	close	the
remaining	distance	to	the	chew	toy.

4.	 Left	(Small):	If	there	are	obstacles	directly	ahead,	turn	left	to	find	a	clear
path.

5.	 Walk	(Medium):	Continue	walking	forward	if	the	path	is	clear.

Next	Action:

Let's	proceed	with	the	first	step	of	the	revised	plan.

yes	Left	Small

Based	on	your	last	action,	the	robot	has	moved.	Here	is	what	the	robot	currently
sees.	If	the	view	is	exactly	the	same	as	before,	this	is	likely	because	your	last

action	was	not	appropriate	for	this	situation	and	the	body	of	the	robot	is	probably
stuck	(maybe	because	of	an	unobserved	obstacle).	Keep	in	mind	that	this	is	the

view	from	the	head	of	the	robot.	Even	if	the	camera	view	is	clear,	the	body	of	the
robot	might	be	stuck.	In	these	cases,	consider	Backward.	Remember	your

ultimate	objective	of	making	progress	in	the	direction	the	robot	initially	started	in
so	that	you	eventually	arrive	at	the	red	chew	toy.	Use	the	state	of	the	robot

including	its	current	position	and	orientation	to	reason	through	what	progress	the
robot	has	made	with	the	plan.	You	reconsider	your	new	multi-step	plan	of	actions

to	take,	keeping	in	mind	the	history	of	what	actions	you	have	selected	and	the
progress	in	the	scene.	If	the	plan	is	working	well,	keep	following	actions	from	that
plan,	making	slight	adjustments	if	necessary.	If	the	plan	is	not	working,	try	a	new

multi-step	plan	with	different	actions.	For	example,	if	you	had	many	tries	of
Climbing	over	an	obstacle	and	the	robot	is	unable	to	make	reliable	forward

progress,	you	might	want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right
around	the	obstacle.	End	your	response	with	the	first	action	in	the	chosen	plan

and	a	magnitude	in	the	format	specified	earlier.



Analysis:

The	robot	has	successfully	turned	left,	revealing	a	clearer	path	ahead.	There	is	a
new	obstacle,	a	cart,	which	the	robot	can	likely	climb	over.	The	red	chew	toy	is
still	visible	in	the	distance,	indicating	the	direction	to	progress.

Revised	Multi-Step	Plan:

1.	 Climb	(Medium):	Climb	over	the	cart	to	make	progress	towards	the	red
chew	toy.

2.	 Walk	(Medium):	Once	clear	of	the	cart,	walk	forward	to	close	the	remaining
distance	to	the	chew	toy.

3.	 Left	(Small):	If	there	are	obstacles	directly	ahead,	turn	left	to	find	a	clear
path.

4.	 Walk	(Medium):	Continue	walking	forward	if	the	path	is	clear.
5.	 Right	(Small):	If	there	are	still	obstacles,	turn	right	to	check	for	another

clear	path.

Next	Action:

Let's	proceed	with	the	first	step	of	the	revised	plan.

yes	Climb	Medium

Based	on	your	last	action,	the	robot	has	moved.	Here	is	what	the	robot	currently
sees.	If	the	view	is	exactly	the	same	as	before,	this	is	likely	because	your	last

action	was	not	appropriate	for	this	situation	and	the	body	of	the	robot	is	probably
stuck	(maybe	because	of	an	unobserved	obstacle).	Keep	in	mind	that	this	is	the

view	from	the	head	of	the	robot.	Even	if	the	camera	view	is	clear,	the	body	of	the
robot	might	be	stuck.	In	these	cases,	consider	Backward.	Remember	your

ultimate	objective	of	making	progress	in	the	direction	the	robot	initially	started	in
so	that	you	eventually	arrive	at	the	red	chew	toy.	Use	the	state	of	the	robot

including	its	current	position	and	orientation	to	reason	through	what	progress	the
robot	has	made	with	the	plan.	You	reconsider	your	new	multi-step	plan	of	actions

to	take,	keeping	in	mind	the	history	of	what	actions	you	have	selected	and	the
progress	in	the	scene.	If	the	plan	is	working	well,	keep	following	actions	from	that
plan,	making	slight	adjustments	if	necessary.	If	the	plan	is	not	working,	try	a	new

multi-step	plan	with	different	actions.	For	example,	if	you	had	many	tries	of
Climbing	over	an	obstacle	and	the	robot	is	unable	to	make	reliable	forward

progress,	you	might	want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right
around	the	obstacle.	End	your	response	with	the	first	action	in	the	chosen	plan

and	a	magnitude	in	the	format	specified	earlier.



Analysis:

The	robot	has	moved	forward	and	is	now	partially	under	the	cart,	indicating	that
the	climb	was	not	entirely	successful.	The	body	of	the	robot	may	be	stuck	under
the	cart.

Revised	Multi-Step	Plan:

1.	 Backward	(Small):	Move	backward	to	clear	the	robot	from	being	stuck
under	the	cart.

2.	 Right	(Small):	Turn	right	to	align	with	a	path	around	the	cart.
3.	 Walk	(Medium):	Walk	forward	to	bypass	the	cart	and	continue	towards	the

red	chew	toy.
4.	 Left	(Small):	If	there	are	obstacles	directly	ahead,	turn	left	to	find	a	clear

path.
5.	 Walk	(Medium):	Continue	walking	forward	if	the	path	is	clear.

Next	Action:

Let's	proceed	with	the	first	step	of	the	revised	plan.

no	Backward	Small

As	a	reminder,	you	are	controlling	a	robot	dog	to	get	through	obstacles	in	this
scene.	The	robot	dog	is	the	size	of	a	golden	retriever.	The	goal	is	to	make

forward	progress	in	this	starting	direction	and	arrive	at	the	location	of	a	red	chew
toy	on	the	other	side	of	the	obstacles	in	front	of	you.	After	each	action	you

command	the	robot	to	take,	you	will	be	given	a	new	image	taken	from	the	head	of
the	robot	dog.	Each	time	you	receive	an	image,	you	must	command	one	of	the

following	six	actions:	Walk,	Crawl,	Left,	Right,	Backward,	Climb.	You	should
command	Crawl	when	it	should	go	under	an	obstacle,	command	Climb	when	it
should	go	over	the	obstacle.	Examples	of	obstacles	the	robot	can	safely	Climb

over	include	stairs,	small	suitcases,	cushions,	small	logs,	and	small	boxes.	Do	not
try	to	Crawl	under	these.	Examples	of	obstacles	the	robot	can	safely	Crawl	under

include	furniture	(if	there	is	sufficient	space)	and	suspended	tree	branches.	Do
not	try	to	Climb	furniture	and	suspended	tree	branches.	Command	Left	when	it

should	go	left	to	get	around	an	obstacle,	and	Right	when	it	should	go	right	to	get
around	the	obstacle.	Right/Left	command	inplace	turns,	meaning	that	the	robot

will	change	the	direction	it	is	facing	but	not	its	position.	This	means	that	if	you
command	a	turn,	you	need	to	move	forwards	in	order	to	move	in	the	new

direction.	Do	not	try	to	turn	Left	or	Right	when	you	confidently	believe	you	are
underneath	or	above	an	obstacle.	You	should	command	the	robot	Backward	if	the

camera	is	obscured	and	it	is	not	clear	what	other	action	to	take.	If	there	is	space
to	walk	forward	in	front	of	you,	you	should	command	Walk.	If	you	ever	command

Backward,	do	not	try	to	do	the	same	action	you	did	before	you	commanded
Backward	again	immediately	(you	may	do	so	later	once	you	are	in	a	different

scenario).	If	it	is	possible	to	go	under	the	obstacle,	try	to	Crawl,	and	if	it	is	possible
to	go	over	an	obstacle,	try	to	Climb,	but	only	if	it	seems	like	a	clear	path	after	the
obstacle.	If	not,	it	might	be	a	dead	end	and	it	might	be	better	to	move	Backward.



Keep	in	mind	that	the	camera	is	on	the	head	of	the	robot,	and	the	whole	body	of
the	robot	is	3	feet	behind	and	also	needs	to	clear	the	obstacle.	Even	if	the	camera

view	is	clear,	the	body	of	the	robot	might	be	stuck:	in	these	cases,	consider
Backward	or	repeating	the	same	action	as	before.	The	task	can	be	completed

with	the	right	sequence	of	actions,	so	if	the	robot	is	not	succeeding,	you	should
use	the	history	of	actions	and	experiences	to	figure	out	why	and	command

different	actions.	When	you	chose	Walk,	Crawl,	or	Climb,	you	will	move	directly
forward,	so	you	may	want	to	slightly	turn	to	make	sure	you	will	move	in	the	right

direction	before	doing	so.	In	your	first	response,	describe	a	multi-step	plan	using
the	available	actions	specified	above	for	completing	the	task	and	give	reasons

that	plan	might	fail.	At	each	subsequent	step,	the	beginning	of	your	response
should	use	the	state	of	the	robot,	including	its	current	position	and	orientation,	to

reason	through	what	progress	the	robot	has	made	with	the	plan.	You	should
reconsider	your	multi-step	plan	of	actions	to	take,	keeping	in	mind	the	history	of

what	actions	you	have	selected	and	the	progress	in	the	scene.	If	the	plan	seems
to	be	working,	keep	following	actions	from	that	plan.	If	an	action	from	the	plan

does	not	seem	to	be	working,	either	revise	the	plan	or	try	a	making	a	new	multi-
step	plan	with	different	actions.	For	example,	if	you	have	had	many	tries	of
Climbing	over	an	obstacle	and	the	robot	is	unable	to	make	reliable	forward

progress,	you	might	want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right
around	the	obstacle.	Each	time	you	give	a	response,	the	third	to	last	word	of	your

response	should	be	a	yes	or	no	indicating	whether	progress	was	made	on	the
prior	state	with	the	previous	command.	The	second	to	last	word	of	your	output

should	be	the	action	to	take.	The	last	word	of	your	response	should	be	a
magnitude	(Small,	Medium,	Large)	that	specifies	how	much	of	that	action	to	take.

For	Right	or	Left	commands,	magnitude	Small	corresponds	to	turning	that
direction	a	full	camera	view	amount.	For	other	commands,	magnitude	Small

corresponds	to	taking	that	action	for	around	one	second.	Once	again,	the	last
three	words	of	your	response	must	be	in	the	format	yes/no

Walk/Crawl/Left/Right/Backward/Climb	Small/Medium/Large.

Analysis:

The	robot	has	successfully	moved	backward	and	now	has	a	clearer	view	of	the
cart	and	the	path	around	it.	The	path	to	the	right	seems	to	provide	more	space	to
navigate	around	the	cart.

Revised	Multi-Step	Plan:

1.	 Right	(Small):	Turn	right	to	align	with	the	clearer	path	around	the	cart.
2.	 Walk	(Medium):	Walk	forward	to	bypass	the	cart	and	continue	towards	the

red	chew	toy.
3.	 Left	(Small):	If	there	are	obstacles	directly	ahead,	turn	left	to	find	a	clear

path.
4.	 Walk	(Medium):	Continue	walking	forward	if	the	path	is	clear.
5.	 Right	(Small):	If	there	are	still	obstacles,	turn	right	to	check	for	another

clear	path.

Next	Action:

Let's	proceed	with	the	first	step	of	the	revised	plan.



yes	Right	Small

Based	on	your	last	action,	the	robot	has	moved.	Here	is	what	the	robot	currently
sees.	If	the	view	is	exactly	the	same	as	before,	this	is	likely	because	your	last

action	was	not	appropriate	for	this	situation	and	the	body	of	the	robot	is	probably
stuck	(maybe	because	of	an	unobserved	obstacle).	Keep	in	mind	that	this	is	the

view	from	the	head	of	the	robot.	Even	if	the	camera	view	is	clear,	the	body	of	the
robot	might	be	stuck.	In	these	cases,	consider	Backward.	Remember	your

ultimate	objective	of	making	progress	in	the	direction	the	robot	initially	started	in
so	that	you	eventually	arrive	at	the	red	chew	toy.	Use	the	state	of	the	robot

including	its	current	position	and	orientation	to	reason	through	what	progress	the
robot	has	made	with	the	plan.	You	reconsider	your	new	multi-step	plan	of	actions

to	take,	keeping	in	mind	the	history	of	what	actions	you	have	selected	and	the
progress	in	the	scene.	If	the	plan	is	working	well,	keep	following	actions	from	that
plan,	making	slight	adjustments	if	necessary.	If	the	plan	is	not	working,	try	a	new

multi-step	plan	with	different	actions.	For	example,	if	you	had	many	tries	of
Climbing	over	an	obstacle	and	the	robot	is	unable	to	make	reliable	forward

progress,	you	might	want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right
around	the	obstacle.	End	your	response	with	the	first	action	in	the	chosen	plan

and	a	magnitude	in	the	format	specified	earlier.

Analysis:

The	robot	has	successfully	turned	right,	providing	a	clearer	view	under	the
platform.	The	red	chew	toy	is	still	visible	in	the	distance.	The	space	under	the
platform	appears	to	be	large	enough	for	the	robot	to	crawl	under	it.

Revised	Multi-Step	Plan:

1.	 Crawl	(Medium):	Crawl	forward	to	move	under	the	platform.
2.	 Walk	(Medium):	Once	clear	of	the	platform,	walk	forward	to	close	the

remaining	distance	to	the	chew	toy.
3.	 Left	(Small):	If	there	are	obstacles	directly	ahead,	turn	left	to	find	a	clear

path.
4.	 Walk	(Medium):	Continue	walking	forward	if	the	path	is	clear.
5.	 Right	(Small):	If	there	are	still	obstacles,	turn	right	to	check	for	another

clear	path.

Next	Action:

Let's	proceed	with	the	first	step	of	the	revised	plan.

yes	Crawl	Medium

Based	on	your	last	action,	the	robot	has	moved.	Here	is	what	the	robot	currently
sees.	If	the	view	is	exactly	the	same	as	before,	this	is	likely	because	your	last

action	was	not	appropriate	for	this	situation	and	the	body	of	the	robot	is	probably



stuck	(maybe	because	of	an	unobserved	obstacle).	Keep	in	mind	that	this	is	the
view	from	the	head	of	the	robot.	Even	if	the	camera	view	is	clear,	the	body	of	the

robot	might	be	stuck.	In	these	cases,	consider	Backward.	Remember	your
ultimate	objective	of	making	progress	in	the	direction	the	robot	initially	started	in

so	that	you	eventually	arrive	at	the	red	chew	toy.	Use	the	state	of	the	robot
including	its	current	position	and	orientation	to	reason	through	what	progress	the
robot	has	made	with	the	plan.	You	reconsider	your	new	multi-step	plan	of	actions

to	take,	keeping	in	mind	the	history	of	what	actions	you	have	selected	and	the
progress	in	the	scene.	If	the	plan	is	working	well,	keep	following	actions	from	that
plan,	making	slight	adjustments	if	necessary.	If	the	plan	is	not	working,	try	a	new

multi-step	plan	with	different	actions.	For	example,	if	you	had	many	tries	of
Climbing	over	an	obstacle	and	the	robot	is	unable	to	make	reliable	forward

progress,	you	might	want	to	try	going	Backward	or	Crawling	or	going	Left	or	Right
around	the	obstacle.	End	your	response	with	the	first	action	in	the	chosen	plan

and	a	magnitude	in	the	format	specified	earlier.

Analysis:

The	robot	has	successfully	crawled	under	the	platform,	and	the	view	is	now	clear
with	the	red	chew	toy	very	close	ahead.	There	are	no	visible	obstacles	between
the	robot	and	the	toy.

Revised	Multi-Step	Plan:

1.	 Walk	(Medium):	Walk	forward	to	reach	the	red	chew	toy.

Next	Action:

Let's	proceed	with	the	first	step	of	the	revised	plan.

yes	Walk	Medium



TABLE VI: Behavior Parameters

Parameter Walk Climb Crawl Left Turn Right Turn Backward
X-Velocity (Small) 0.4 m/s 0.6 m/s 0.3 m/s 0 m/s 0 m/s -0.3 m/s

X-Velocity (Medium) 0.6 m/s 0.6 m/s 0.3 m/s 0 m/s 0 m/s -0.3 m/s
X-Velocity (Large) 0.6 m/s 0.6 m/s 0.3 m/s 0 m/s 0 m/s -0.3 m/s

Y-Velocity 0 m/s 0 m/s 0 m/s 0 m/s 0 m/s 0 m/s
Gait Type 1 3 1 1 1 1

Body Height 0 m 0 m -0.3 m 0 m 0 m 0 m
Yaw Speed 0 rad/s 0 rad/s 0 rad/s 0.3 rad/s -0.3 rad/s 0 rad/s

Duration (Small) 3 s 6 s 2 s 2.5 s 2.5 s 1.5 s
Duration (Medium) 5 s 9 s 3 s 3.5 s 3.5 s 2.5 s

Duration (Large) 7 s 12 s 4 s 4.5 s 4.5 s 5 s

TABLE VII: GPT-4o Query Hyperparameters

Parameter Value
Temperature 0.7
Top P 0.95
Max Tokens 800
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