Exploiting Policy Idling for Dexterous Manipulation

Annie S. Chen, Philemon Brakel, Antonia Bronars, Annie Xie, Sandy Huang, Oliver Groth,
Maria Bauza, Markus Wulfmeier, Nicolas Heess, Dushyant Rao
Google DeepMind

Abstract— Learning-based methods for dexterous manipu-
lation have made notable progress in recent years. However,
learned policies often still lack reliability and exhibit limited
robustness to important factors of variation. One failure pattern
that can be observed across many settings is that policies idle,
i.e. they cease to move beyond a small region of states when
they reach certain states. This policy idling is often a reflection
of the training data. For instance, it can occur when the data
contains small actions in areas where the robot needs to perform
high-precision motions, e.g., when preparing to grasp an object
or object insertion. Prior works have tried to mitigate this
phenomenon e.g. by filtering the training data or modifying the
control frequency. However, these approaches can negatively
impact policy performance in other ways. As an alternative, we
investigate how to leverage the detectability of idling behavior
to inform exploration and policy improvement. QOur approach,
Pause-Induced Perturbations (PIP), applies perturbations at
detected idling states, thus helping it to escape problematic basins
of attraction. On a range of challenging simulated dual-arm
tasks, we find that this simple approach can already noticeably
improve test-time performance, with no additional supervision
or training. Furthermore, since the robot tends to idle at critical
points in a movement, we also find that learning from the
resulting episodes leads to better iterative policy improvement
compared to prior approaches. Our perturbation strategy also
leads to a 15-35% improvement in absolute success rate on
a real-world insertion task that requires complex multi-finger
manipulation.

I. INTRODUCTION

Enabling robots to perform dexterous manipulation tasks
remains a significant challenge in robot learning. While
better architectures and larger datasets have led to significant
improvements, existing approaches are still far from reaching
general task mastery. In particular, although many failure
modes will inevitably be task- and architecture-specific, there
are some common patterns that can be observed across a
broad range of different settings.

For instance, successful robot episodes, collected either by
human demonstrators or with an expert policy, often contain
subtle pauses preceding difficult maneuvers, as shown in
Figure 1. When state-of-the-art imitation learning policies
are trained on unfiltered data with these pauses, they exhibit
"idling behavior," mirroring these pauses during their own
rollouts, as observed in prior work [1], [2]. This behavior
may also be caused or exacerbated e.g. by uncertainty due to
data scarceness, or action multi-modality in certain parts of
the state space [3], [4]. In our investigation, we observe this
behavior as a general phenomenon for different tasks, policy
architectures, and learning methods.

While there are ways to reduce the policy idling behavior,
e.g., by filtering pauses and small actions from the training

Expert Data £
(=}

4
... © 0.04
=)
L ()] 5
e Zoo
O
g 0.02
Teleoperated ~ Expert a
Demos Policy € 001

100 200 300 400
Episode Step

Step 60

Step 200

Step 352

Fig. 1: Pauses in expert data occur at critical states. Expert trajectories
of dexterous tasks often include subtle pauses, which can lead to idling in
policies trained on this data but also provide valuable information about task
difficulty. We propose ways of exploiting this indefinite pausing for better
performance, as opposed to techniques for removing this behavior.

data or by executing longer sequences of actions open loop,
our experiments suggest that such approaches may require
careful tuning and can compromise policy reactivity and
precision. Moreover, such approaches do not capitalize on
the following insight: idling behavior tends to occur before
difficult or intricate maneuvers that require small actions, as
we observe in failure trajectories in Figure 2, and may thus
provide a valuable signal for policy improvement.

Our method, Pause-Induced Perturbations (PIP), takes a
different approach. It identifies idling behavior and leverages
it as a signal for exploration and policy improvement. At test
time, we detect "idling behavior" and apply a perturbation to
the action commands towards the robot arms’ initial position.
The concept of using perturbations to escape unwanted
attractors is well-studied in fields like physics and chemistry,
where it is applied to a variety of dynamical systems [5],
[6]. Drawing on this principle, intuitively our perturbations
aim to dislodge the policy from the problematic local states
associated with idling, encouraging exploration of nearby
states and potentially leading to task completion. This has
two main benefits: (1) we find that test-time perturbations
offer immediate performance gains, and (2) we can exploit
the resulting perturbed rollouts for iterative policy self-
improvement.

Current methods for iterative self-improvement tend to
plateau quickly with additional rollouts [7], due to limited
exploration in informative regions of the task space. Our
pause-induced perturbations implicitly focus on challenging
segments of the task, and can thus lead to a richer dataset of

successful trajectories. Building on this insight further, we
leverage idling detection to pinpoint where mistakes may have
occurred in failure trajectories and exploit this in the policy
improvement step: we fine-tune the policy with preference-
based imitation learning using labels obtained from idling
detection, to reduce the likelihood of transitions leading to
idling segments in failure trajectories.

The main contributions of this work are the following:

1) We establish that policy failures, in a variety of settings,
are caused by idling behavior.

2) We propose an autonomous perturbation strategy at
detected idling states for test-time improvement.

3) We show that the perturbed rollouts also aid iterative
policy improvement and propose a preference-based
imitation learning approach that leverages idling detec-
tion to provide informative preference labels, reducing
the likelihood of transitions leading to idling in future
rollouts.

We evaluate our approach on a suite of nine challenging
simulated ALOHA tasks [1] and a real-world connector
insertion task with a dexterous hand [8]. We find that
applying simple perturbations at detected idling states leads to
immediate improvements in test-time performance by helping
the policy escape these problematic basins of attraction.
Our test-time pause-induced perturbation strategy, which
requires no additional training or supervision, leads to a
5-10% absolute improvement in success rate in the ALOHA
tasks compared to the base policy, and a 15-35% absolute
improvement on the real-world connector insertion task.
Furthermore, we show that the knowledge gained through this
targeted exploration can be effectively distilled back into the
policy, resulting in similar improvements in the next round
of iterative policy improvement.

II. RELATED WORK

A. Detecting and recovering from challenging states

Previous work has explored identifying critical states [9] or
bottlenecks [10] in a task via methods like sensitivity analysis
[11] or using heuristics based on task progress [12]. Other
approaches have learned a critic that can predict the difficulty
of a state [13], where the agent might be stuck [14], which
sampled action to take [15], or how to recover from out-of-
distribution states [16]. Other works use density estimation
to identify states that are out of distribution and utilize a
specialized policy to recover [17]. However, these methods
often require significant computational overhead, reliable
value functions (which can be hard to learn from offline
data) or external information (e.g., expert behaviors). Our
method, on the other hand, provides a simple and effective
way to identify critical states by directly observing the "idling
behavior" exhibited by policies trained on unfiltered expert
data. Our method is inspired by the use of perturbations to
escape from unwanted attractors in dynamical systems, which
has been well-studied in physics and chemistry [5], [6].

B. Self-improvement flywheels

Iterative policy improvement [18], [19] has demonstrated
the potential of bootstrapping performance from initial

demonstrations through iterative data collection and policy
refinement. Works like DAgger [20] and its variants [21]-[23]
rely on expert intervention for data collection, which is less
scalable and more expensive. Some recent work lessens this
cost but still requires human labels for where to augment the
data with perturbed transitions [24]. This setting is similar to
offline-to-online reinforcement learning [25]-[27] in that one
first trains on offline data and subsequently performs policy
rollouts to further learning, but with the important difference
that no online RL is used, which can be harder to set up
efficiently with larger models and can require careful tuning
of replay buffer settings. Another important difference is that
offline-to-online RL relies on value functions, which are less
obvious to learn with action chunking and diffusion policies,
although there has been some recent work in that direction
[28]-[30]. Our work aims to improve the self-improvement
flywheel of iterative policy improvement by leveraging an
intrinsic signal—idling—to guide exploration and overcome
performance plateaus.

C. Exploration strategies

A variety of exploration techniques have been proposed
to address the exploration-exploitation dilemma in RL and,
by extension, iterative policy improvement. Generic ex-
ploration strategies, such as epsilon-greedy or Boltzmann
exploration [31], [32], often lack the targeted focus needed
for efficient improvement. Curiosity-driven methods [33]-
[36] explore regions of the state space that are novel or
unpredictable, but may not directly address the specific
challenges faced by the policy in performing the task. Another
class of methods adds different types of noise into the data
collection process. Methods like DART [21] and Bayesian
Disturbance Injection [37] add noise during demonstrations,
whereas other methods [38], [39] inject varying amounts of
noise into the learned policy. Noise can also be injected into
the demonstrations to robustify training [40], [41]. Our work
proposes a data-driven exploration strategy that leverages
pauses, which are easily detectable and commonly found
in rollouts, to guide targeted exploration specifically in
challenging segments of the task.

ITI. PRELIMINARIES

Our goal is to maximize the expected cumulative reward,
ER] = E [Z;O ’ytr(st,at)}, within a Markov Decision
Process (MDP) defined by (S,.A,P,r) with state space
S, action space A, transition probabilities P(s'|s,a), and
reward r(s,a). We are provided with an initial dataset of
N successful episodes, Dexpert = {71, ...,7n}, Where each
7 = {80, a0, 81,01, ...,ST,ar} is a state-action trajectory.
These trajectories may be provided by humans or other means,
for example scripted or expert RL policies. Towards our goal,
we learn a policy mp(als) and apply test-time perturbations,
with no additional human supervision, model training, or data
needed.

We additionally consider an iterative policy improvement
setting, derived from the Collect and Infer paradigm [42],
[43], which leverages a limited online interaction budget
to iteratively improve the policy. An initial policy, 7, is

first trained on Deyxperr. It is then used to collect a dataset of
online experience, Dye = {71,...,7a}. Each trajectory 7;
is associated with a binary success indicator, that captures
whether the task was completed successfully. These rollouts
are then used to train or fine-tune the next policy, 7, and
this can be repeated for further iterations. A key challenge
in iterative policy improvement is balancing exploitation of
successful behaviors with exploration to discover potentially
superior strategies. The limited online budget necessitates
efficient exploration to maximally improve the policy within
the allowed number of interactions.

IV. PAUSE-INDUCED PERTURBATIONS (PIP)

A. Detecting idling behavior from the policy

We train an initial policy mg on the expert data Dexperr and
then execute it in the environment and observe its behavior.
We find that 7 often exhibits idling behavior characterized
by prolonged periods of limited movements, particularly at
critical state regions with small actions present in the expert
data. We define idling behavior as a sequence of consecutive
states where the ¢2-norm of the change in robot joint positions
between consecutive transitions falls below a threshold e for a
duration exceeding 7' timesteps. Figure 2 shows examples of
this idling behavior, highlighting the correspondence between
difficult parts of the task and inaction in the policy’s execution.

B. Perturbations and self-improvement using detected idling

Our approach hinges on the observation that pauses and
small actions in expert data often correspond to critical states
requiring precision in dexterous manipulation tasks, and that
this is also reflected in policy idling. We thus leverage idling
behavior for both test-time performance improvement and
targeted data collection for policy self-improvement.

a) Test-time perturbations

During test-time rollouts of my, we detect "idling states"
where the policy exhibits indefinite pause behavior (as defined
above). Upon detecting an idle state, we take a perturbed
action as. This perturbation is a simple alteration to the
predicted action, by interpolating the action towards the initial
joint configuration of the robot arms. That is, if the policy is
position-controlled, instead of executing the predicted action,
we take the following action interpolating between the current
joint positions Sjoinis,: and the initial joint positions Sjeints,o:

Qs = O Sjoints,t T (1 - U)Sjoints,O ,

where o is a hyperparameter controlling the perturbation
magnitude and balancing exploration and exploitation. Empir-
ically, we find that a value of o between 0.6 and 1.0 works
well; this keeps the perturbed action closer to the original
prediction, breaking the idling behavior while still leveraging
the policy’s knowledge. Intuitively, this perturbation to the
executed actions aims to dislodge the policy from the local
states associated with idling behavior, encouraging exploration
of nearby states and potentially leading to task completion.
b) Iterative policy improvement with preference-based
imitation learning

For autonomous policy improvement, we collect the trajec-
tories resulting from these test-time perturbations, including

both successful and unsuccessful outcomes, to form an
augmented dataset D,,e. Crucially, idling detection provides
valuable information for refining the policy—by identifying
idling segments within failure trajectories, we can pinpoint ac-
tions that likely contributed to failure. We leverage this insight
within a preference-based learning framework, PMPO [44],
to fine-tune the policy.

Specifically, we maximize the likelihood of all transitions
from successful trajectories (denoted as Dg) and minimize
the likelihood of transitions leading to idling states in failed
trajectories (denoted as D) and a KL-divergence term to
regularize the updated policy towards the initial policy 7,
to prevent excessive deviation:

Lpmpo(0) =aE (s 0y~ p, [log mg(als)]
— (1 = @)E(s,0)~p, [log m(als)]
- ﬁKL(ﬂ-refv ;5 S) 5

where s denotes the state, a denotes the action, o controls
the weighting between accepted and rejected actions, and 3
regulates the KL divergence penalty.

V. EXPERIMENTS

In this section, we first describe our experimental setup and
analyze the prevalence of policy idling. We then empirically
evaluate (1) the extent to which PIP improves the test-time
performance of the base policy in both simulated and real-
world settings, and (2) if PIP can lead to better iterative policy
improvement compared to prior methods.

A. Experimental Setup

1) ALOHA simulation task suite

We test PIP on a range of nine challenging bimanual tasks
in an ALOHA [1] environment simulated in MuJoCo, shown
in Figure 3. The observation space consists of joint positions,
an overhead camera, worms-eye camera, and 2 wrist cameras.
The action space consists of 14 joint positions including the
gripper. The control rate is S0Hz. Each of these tasks have a
wide variety of initial states. Demonstrations are collected via
human teleoperation using an Oculus headset. For each task,
we begin with 214 to 616 human-collected demonstrations
as expert data. We evaluate and report success rates and
90% confidence intervals over 1000 trials, with a maximum
episode length of 2500 steps.

In this domain, we mainly use the Perceiver Actor Critic
(PAC) architecture [45] together with a SigL.IP vision en-
coder [46] as the foundation for our policy representation.
The perception module of PAC encodes these inputs into a
compact latent representation with a cross-attention encoder.
The policy network is implemented using a cross-attention
decoder to predict the parameters of the action distribution
from the encoder’s latent token representation. We model
the action distribution using a Laplace distribution, with its
parameters (mean and scale) outputted by the actor network.
Minimizing the negative log-likelihood of a dataset of samples
under this distribution is equivalent to minimizing an ¢1
regression loss on the same data, which has been shown to

0.02

Failure Rollout
Joint Pos Change Norm
o o o
o > °
N g &
Joint Pos Change Norm
o o o
o ° =
2 a &

4
o
S

0.00

1250
Step in Rollout

1750 2000

Step 1687 (idle)

Step 810 (idle)

S—

Step 1608 (idle) Step 106 ‘ Step 1011 (idle) ‘

/

A e Novniidl

0.08

o
o
&

o
=3
3

PIP

Joint Pos Change Norm
o o
o =3
N S

Test-Time PIP

o
o
o

600 800 1000
Step in Rollout

1200 1400

L LT ol)

) TS

L i

e §

=)

Step 568
(idling starts)

Step 750 (successful grasp
post-perturbation)

Step 247
(idling starts)

Step 400
(perturbation)

Step 700
(handover succeeds)

Fig. 2: Idling behavior in policy rollouts indicates critical states. (Top Row) Failure rollouts on the Fruit Bowl and Glass on Rack tasks. The plot depicts
the ¢2-norm of the change in joint position over time, with low values indicating periods of idling. Corresponding images show the robot’s configuration
during these pauses, occurring before or during challenging maneuvers (e.g., grasping fruit or glass). (Bottom Row) Test-time execution on the tasks using

our perturbation strategy. Corresponding images illustrate how the perturbation helps the robot escape idling states and successfully complete the tasks.

Bowl on
Rack

Handover
Pen

Handover
Banana

Mug on
Plate

Fruit in
Bowl

Double
Insertion

Plate on
Rack

Glass on
Rack

Single
Insertion

Fig. 3: Simulated ALOHA test suite. We evaluate on nine challenging bimanual tasks in a simulated ALOHA environment, encompassing a range of
objects (e.g. mug, fruit, glass, peg) and initial states that often require precise manipulation to complete successfully.

be effective in prior work in the ALOHA domain [1], and
we found it to be empirically better than using Gaussian
action distributions. We train with action chunking [1], using
a training chunk length of 50 and open loop execution of
20 steps during evaluation. For PIP, we detect idling if the
total joint pose change is under the threshold ¢ = 0.06 across
adjacent size-20 chunks for 7" = 8 timesteps, setting o = 0.6
for the perturbation magnitude. These hyperparameters were
chosen based on preliminary experiments, were held constant
for all tasks, and were not extensively tuned.

To ensure our conclusions are not specific to a particular
policy class, we also evaluate the test-time performance
improvement with PIP for a multi-task diffusion policy with
an architecture used in [47] on a subset of the tasks, with
the same default hyperparameters and action chunking of 50
steps with 10 open loop steps.

2) Real-world connector insertion with a DEX-EE hand

We additionally evaluate the test-time performance im-
provement of PIP on a dexterous real-world task. We follow
the experimental setup used in DemoStart [8], consisting of a
Kuka LBR iiwa 14 robot arm equipped with a three-fingered
DEX-EE hand, with dual wrist-mounted cameras positioned

Yellow Connector

Duct Tape Connector

Fig. 4: DEX-EE connector insertion task. We evaluate on a precise real-
world dexterous manipulation task, where a three-fingered DEX-EE hand
must pick up the connector and fit it into the socket.

at the hand’s base and tactile sensors at the fingertips. The
18-dimensional action space includes 6 dimensions for the
hand’s desired Cartesian velocity and 12 dimensions for the
desired joint angles of the hand’s fingers. We evaluate using
20 trials of a Connector Insertion task with two connector
variants, one yellow and one covered with duct tape with
higher friction for slightly easier grasps. We first train a
policy with privileged state information using DemoStart in
a MuJoCo simulation environment, and then distill expert

Domain \ Method \ Average % Failures Idle

ALOHA | PAC (Filter + High OL) 3.5%
PAC 84.9%
Diffusion 22.3%
DEX-EE | ACT | 90%

TABLE I: Average percentage of failures with idling. A high percentage
of failures contain idling across our settings and policies, showing that this
is a significant failure mode for both simulated and real-world settings.
We can avoid pauses by filtering out small actions from the dataset and
increasing the number of open-loop steps (Filter + High OL), but this can
hurt performance, as shown in Figure 5.

episodes to a student policy with visual observations using
ACT [1] for the real world. The distillation dataset consists
of 1 million expert trajectories collected with physics domain
randomization on the friction, mass, and inertia of the scene
joints and bodies, as well as applied force variation for the
free bodies in the scene. We randomize asset colors and
textures for 700k trajectories and use photorealistic Filament
renderings with randomized lighting for the remaining 300k.
The ACT policy receives five camera images (three overhead
and two wrist), arm and hand joint angles, wrist pose, and
binary fingertip contacts.

Transferring from simulation to the real world involves
a significant distribution shift, which frequently induces
idling behavior. We detect such behavior in the real world
by thresholding the average difference between consecutive
action predictions using a threshold ¢ = 0.001 for T' = 2
timesteps. After a pause is detected, the perturbation moves
the arm up by Scm (towards the initial robot arm position)
over 10 timesteps (at a control rate of 20Hz), then resume
policy execution.

B. Baselines

To evaluate the test-time performance improvement of PIP
in the simulated ALOHA environment, we compare to the
following methods: (1) Base, where we train a base policy on
all the given expert data and successful online rollout episodes,
(2) Noise [31], where we add Gaussian noise to the actions in
an e-greedy fashion, (3) RND [48], where we sample multiple
actions at each timestep and choose one based on their novelty
measured by the RND score computed over the trajectory
of (proprioceptive state, action) pairs observed during the
current episode. We additionally compare performance to a
base policy trained with small actions filtered out and with a
longer action chunking sequence (Pause-Filtered), which are
strategies prior work has used to eliminate pausing [1].

During the iterative improvement step, we fine-tune a base
policy with the rollouts collected using the above methods,
using the standard iterative improvement recipe of fine-tuning
with behavioral cloning on only successful rollouts. For PIP,
we use @ = 0.9 and f = 0.3 for the preference-based
imitation learning loss.

C. Policy idling failure mode analysis

Idling behavior often arises when the robot, operating near
states that require precise actions, becomes stuck predicting
and executing small, repetitive movements. To understand the

Method \ Average Action Variance
PAC (Filter + High OL) 2.7e-3
PAC 2.2e-3
PAC, idle states 3.8e-4
PAC, non-idle states 2.3e-3

TABLE II: Action variance in idle versus non-idle states. We compare the
average variance of actions taken by PAC policies across different conditions.
The lower action variance in idling states compared to non-idling states for
the base policy indicates that the policy predicts small, repetitive movements
reflecting the small-action training data in critical states.

prevalence of policy idling as a failure mode, we analyzed
the frequency of failure episodes that contain idling in our
dexterous manipulation settings, shown in Table I. In our
main evaluation on the ALOHA test suite, for the PAC policy
trained on unfiltered demonstrations, a high 84.9% of failed
episodes contained idling behavior. Similarly, in the real-
world DEX Connector insertion task, idling occurred for 90%
of failures with the base policy. The incidence of idling was
lower for the diffusion policy but was still a significant failure
mode. As a comparative baseline, we trained a PAC policy on
a dataset where small actions (with £2-norm of consecutive
actions under 0.0015) were filtered out, and used a higher
open-loop setting of 40 during execution (Filter + High OL).
This approach drastically reduced the incidence of idling
in failures in ALOHA down to 3.5%. However, as seen in
Figure 5, mitigating idling through filtering and high open-
loop control can compromise overall task performance, which
motivates our approach to leverage rather than eliminate these
transitions with small actions.

We investigate two potential causes of idling behavior: (1)
the policy repeatedly predicts the same suboptimal actions,
or (2) the policy exhibits high-variance action predictions,
rapidly switching between different actions. To assess these
hypotheses, we calculated the average variance of action
samples at both idling and non-idling states for the base
policy and a non-idling policy (Filter + High OL). As
shown in Table II, idling states exhibited significantly lower
average action variance than non-idling states for the base
policy. Furthermore, the non-idling policy showed even higher
action variance. These findings support the first hypothesis,
suggesting that idling arises from the policy consistently
predicting the same, ineffective action in specific state regions,
rather than from high-variance action switching.

D. Improving test-time performance

Our test-time perturbation strategy consistently demon-
strates improved performance across both simulated and real-
world dexterous manipulation tasks. In the following, we show
how PIP can exploit idling in three policy and environment
settings: simulated ALOHA with PAC, simulated ALOHA
with diffusion policies, and real-world DEX-EE with ACT.

In the simulated ALOHA test suite, as shown in Figure 5,
applying perturbations at detected idling states resulted
in a 4.4% overall average increase in absolute success
rate compared to a PAC policy, with no additional human
supervision, for two different base policies (one trained only
with demonstrations and another trained additionally with the

el e % W ol e
dovefaa a“dovef‘? Mgon"\a SIONREEE e Gasson\‘ ?\awor\"\ g\e\“se% ub\e\nSef“ Cpyerad

Bm Pause-Filtered Base policy

‘ ‘ ‘&Ilﬂ Ill”i

N e wh e
dove(\aag?‘%ove“;\eugon"‘a 0nRO kB0 GO \ateO““a \e\nse“ \em;emgverag

Noise RND mm PIP

Fig. 5: Test-time perturbations with PIP on ALOHA tasks with PAC agents. For both (left) a base policy trained only on demos and (right) one trained
on both demos and successful rollouts from 5000 trials per task, PIP significantly improves performance over the base policy and comparisons with no
additional training or supervision. We report success rates over 1000 trials and 90% confidence intervals for each task.

90

o ~ ©
=} o S

Success Rate (%)

40

0
Yellow connector Duct Tape Connector

Base - Grasps PIP - Grasps

1 Base - Full Success mmm PIP - Full Success

Fig. 6: PIP significantly improves performance on a real-world DEX
connector insertion task. We report success rate across 20 trials for each
method on an insertion task with two different connectors and find that
perturbations with PIP improve performance by 15-35% absolute success
rate over the base policy on grasping the connector and full task success.

successful rollouts from 5000 trials per task). We observe that
the benefits are most noticeable in tasks such as Fruit Bowl,
where PIP improves performance by almost 10%, and the
Object On Rack tasks, where PIP improves performance by an
average of 7%. In these scenarios, the perturbations provided
by PIP are often sufficient to overcome idling, allowing
the policy to achieve success where it would previously
pause. The gains are less significant in the insertion tasks—in
these tasks, the objects often end up in significantly out-
of-distribution configurations, where local perturbations are
less likely to bridge the gap to states similar enough to a
successful trajectory from the training data.

As a baseline, we tried several approaches for filtering
out small actions with various thresholds, along with a
longer open loop of 40 timesteps to remove idling. However,
even with extensive tuning, these often degraded the overall
performance of the policy; we report the performance of best
model with filtering as Pause-Filtered. The reason for the
suboptimal performance may be because small actions often
coincide with difficult parts of the task requiring precision,
so filtering out even a small amount of these actions may
lead to reduced precision. PIP also consistently outperformed
common perturbation methods that either add noise to actions
or utilize RND for exploration, highlighting the value of

Task | Method | Success Rate

PlateOnRack Base 46.7%
PIP 56.7%

FruitBowl Base 58.3%
PIP 63.3%

TABLE III: PIP improves test-time performance using a diffusion policy.
PIP shows significant improvement in success rate on two simulated ALOHA
tasks with this policy class, across 60 trials.

having a targeted strategy for perturbations when the policy
is idle.

Furthermore, to demonstrate the potential applicability of
our method to different policy architectures, we also apply
PIP to a diffusion policy following [47], trained on the Plate
On Rack and Single Insertion tasks. While the behavior of
this policy exhibits more consistent movement due to better
handling of multimodality [2], the policy can still become
stuck retrying the same strategy in states near a critical state
region, and we can detect this and leverage PIP by using
a higher threshold (¢ = 0.02 across adjacent actions for
200 steps). In Table III, we find that PIP can still lead to
improvements in test-time performance in this setting.

Our perturbation strategy shows particularly significant
improvements in the real-world DEX connector insertion task
across two different connectors, as shown in Figure 6. PIP
boosted grasp success by 25-30% and full insertion by 15-
35%, in terms of absolute success percentage. While the robot
may initially pause due to sim-to-real distribution shift or
partial observability in the real world, where the policy cannot
distinguish small differences between neighboring states, our
perturbations are often sufficient to resume progress, enabling
the policy to successfully complete the task. Note that in this
case there were no pauses in the training data, since it was
trained on expert RL agent data, so filtering small actions
was not an option.

These results highlight that policy idling can originate from
different sources: imperfections in human demonstrations and
the sim-to-real gap. In both cases, the policy can become
trapped in states characterized by small, repetitive actions,
ultimately leading to idling and task failure. By recognizing
and leveraging this shared characteristic, our perturbation
strategy offers a unified approach to improving performance in
both demonstration learning and sim-to-real transfer settings.

Iterative Improvement with 250 Additional Rollouts

HandOverBananaHandOverPen MugOnPlate BowlOnRack FruitBowl! GlassOnRack PlateOnRack Singlelnsertion Doublelnsertion Average

B e = o-————== = |
[0.9 jo———== ﬁ //‘
© e PO Base
i 08 o~ o=~ - Noise
4 - RND
307 -9 P ~e- PIP (+ Pref)

=== _--9 JPtaas —= o
0.6 - . o—=""
o=
5K 5K+250 5K 5K+250 5K 5K+250 5K 5K+250 5K 5K+250 5K 5K+250 5K 5K+250 5K 5K+250 5K 5K+250 5K 5K+250

Number of Rollouts

Fig. 7: Iterative improvement plateaus without PIP. After training a base policy with demos and 5000 rollouts generated by an initial policy trained on
demos, iterative imitation learning, even with noise or RND exploration, shows negligible improvement with an additional 250 rollouts, indicating a plateau
in performance. However, PIP (+ Pref) continues to improve, highlighting the benefits of targeted exploration at critical states.

Iterative Improvement over Multiple Rounds

MugOnPlate BowlOnRack FruitBow! GlassOnRack PlateOnRack Average
0.9 e
/—"'__‘—_

0.8 { gue==""
E Base

74 14 —~ 914 "4 4 Ny -
g s - T e e P
§ 06 == o= - PIP (+ Pref)
o |0l T~ e -9

0s ./0—\'

0 1k 2k 0 1k 2k 0 1k 2k 0 1k 2k 0 1k 2k

Number of Rollouts

Fig. 8: PIP improves over multiple rounds of iterative improvement. Across two rounds of iterative policy improvement each with 1000 rollouts per
task, PIP (+ Pref) consistently outperforms the base policy and a variant without preference-based training.

E. Better iterative policy improvement data

A key challenge in iterative policy improvement is the
tendency for performance improvement to plateau after
training with policy rollouts [7]. We see this in Figure 7:
after an initial round of training on 5000 environment rollouts,
collecting and training on an additional 250 rollouts provides
negligible benefit to the baseline policy across the ALOHA
task suite. This suggests that these additional rollouts do
not provide further useful information. In contrast, PIP (+
Pref) continues to improve even with this limited amount
of additional data, demonstrating the effectiveness of our
targeted exploration strategy on states identified through pause
detection.

To further investigate the benefits of our approach, we
conducted experiments with multiple rounds of iterative
improvement, as shown in Figure 8. In this setting, policies
were trained on 1000 rollouts per task for two rounds. We find
some improvement with incorporating preference information
derived from pauses, as PIP (+ Pref) improves by 3% average
success rate across all tasks, compared to a variant of PIP
that does filtered behavior cloning and does not utilize the
preference-based training objective, showing that decreasing
the likelihood of actions leading to pauses is another way
of leveraging the detected pauses. Furthermore, PIP (+ Pref)
exhibits consistent and significant improvement across both
rounds compared to the base policy, highlighting the sustained
benefit of our targeted exploration strategy.

VI. LIMITATIONS AND FUTURE WORK

While our method demonstrates the effectiveness of
leveraging idling in policy rollouts for improved dexterous
manipulation, several limitations and avenues for future work
exist. First, our current perturbation strategy employs a simple
interpolation towards the initial joint configuration. If the tasks
have a brittle training distribution where the robot is likely to
end up in out-of-distribution states, the policy may not always
be able to recover even with perturbations towards more in-
distribution states. Exploring more sophisticated perturbation
techniques could potentially yield further performance gains.
In addition, PIP may not lead to significant improvements
for policies where idling is not a main failure mode, such
as expert RL policies or environments with abundant data.
Finally, strategies to overcome and leverage policy idling
open up numerous exciting avenues for future research. For
instance, the detected idling states could inform the selection
of new expert demonstrations, guiding data collection towards
the most challenging aspects of the task. Integrating pause de-
tection mechanisms with interactive learning approaches like
DAgger could also enable more targeted human interventions,
further accelerating the learning process.

REFERENCES

[11 T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-
grained bimanual manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023.

[2] C.Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
arXiv preprint arXiv:2303.04137, 2023.

[3] G. Swamy, S. Choudhury, D. Bagnell, and S. Wu, “Causal imitation
learning under temporally correlated noise,” in ICML, 2022.

[4]

[5]

[9

—

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Y. Liu, J. I. Hamid, A. Xie, Y. Lee, M. Du, and C. Finn, “Bidirectional
decoding: Improving action chunking via closed-loop resampling,”
arXiv:2408.17355, 2024.

C. S. Rodrigues, C. Grebogi, and A. P. de Moura, “Escape from
attracting sets in randomly perturbed systems,” Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, 2010.

H. A. Kramers, “Brownian motion in a field of force and the diffusion
model of chemical reactions,” physica, 1940.

S. Mirchandani, S. Belkhale, J. Hejna, E. Choi, M. S. Islam, and
D. Sadigh, “So you think you can scale up autonomous robot data
collection?” arXiv:2411.01813, 2024.

M. Bauza, J. E. Chen, V. Dalibard, N. Gileadi, R. Hafner, M. F. Martins,
J. Moore, R. Pevceviciute, A. Laurens, D. Rao, et al., “Demostart:
Demonstration-led auto-curriculum applied to sim-to-real with multi-
fingered robots,” arXiv:2409.06613, 2024.

Y. Spielberg and A. Azaria, “The concept of criticality in reinforcement
learning,” in ICTAI. 1EEE, 2019, pp. 251-258.

I. Menache, S. Mannor, and N. Shimkin, “Q-cut—dynamic discovery
of sub-goals in reinforcement learning,” in ECML. Springer, 2002.
H. Liu, M. Zhuge, B. Li, Y. Wang, F. Faccio, B. Ghanem, and
J. Schmidhuber, “Learning to identify critical states for reinforcement
learning from videos,” in ICCV, 2023, pp. 1955-1965.

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First
return, then explore,” Nature, 2021.

C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse
curriculum generation for reinforcement learning,” in CoRL, 2017.
M. Du, A. Khazatsky, T. Gerstenberg, and C. Finn, “To err is robotic:
Rapid value-based trial-and-error during deployment,” arXiv preprint
arXiv:2406.15917, 2024.

M. Nakamoto, O. Mees, A. Kumar, and S. Levine, “Steering your
generalists: Improving robotic foundation models via value guidance,”
arXiv:2410.13816, 2024.

A. Chen, A. Sharma, S. Levine, and C. Finn, “You only live once:
Single-life reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 35, pp. 14784-14797, 2022.

A. Reichlin, G. L. Marchetti, H. Yin, A. Ghadirzadeh, and D. Kragic,
“Back to the manifold: Recovering from out-of-distribution states,” in
IROS. IEEE, 2022, pp. 8660-8666.

K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee,
M. Bauza, T. Davchev, Y. Zhou, A. Gupta, A. Raju, et al., “Robo-
cat: A self-improving foundation agent for robotic manipulation,”
arXiv:2306.11706, 2023.

M. Ahn, D. Dwibedi, C. Finn, M. G. Arenas, K. Gopalakrishnan,
K. Hausman, B. Ichter, A. Irpan, N. Joshi, R. Julian, ef al., “Autort:
Embodied foundation models for large scale orchestration of robotic
agents,” arXiv preprint arXiv:2401.12963, 2024.

S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in AISTATS,
2011, pp. 627-635.

M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, “Dart: Noise
injection for robust imitation learning,” in CoRL, 2017.

M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer,
“Hg-dagger: Interactive imitation learning with human experts,” in ICRA.
IEEE, 2019, pp. 8077-8083.

R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and
K. Goldberg, “Thriftydagger: Budget-aware novelty and risk gating
for interactive imitation learning,” arXiv:2109.08273, 2021.

L. Ankile, A. Simeonov, I. Shenfeld, and P. Agrawal, “Juicer: Data-
efficient imitation learning for robotic assembly,” arXiv:2404.03729,
2024.

A. Nair, A. Gupta, M. Dalal, and S. Levine, “Awac: Accelerating online
reinforcement learning with offline datasets,” arXiv:2006.09359, 2020.
S. Lee, Y. Seo, K. Lee, P. Abbeel, and J. Shin, “Offline-to-online
reinforcement learning via balanced replay and pessimistic g-ensemble,”
in CoRL, 2022.

M. Nakamoto, S. Zhai, A. Singh, M. Sobol Mark, Y. Ma, C. Finn,
A. Kumar, and S. Levine, “Cal-ql: Calibrated offline rl pre-training for
efficient online fine-tuning,” NeurIPS, vol. 36, 2024.

P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine,
“Idgl: Implicit g-learning as an actor-critic method with diffusion
policies,” arXiv:2304.10573, 2023.

Y. Seo and P. Abbeel, “Coarse-to-fine g-network with action sequence
for data-efficient robot learning,” 2025.

[30]

[31]
(32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

A. Z. Ren, J. Lidard, L. L. Ankile, A. Simeonov, P. Agrawal,
A. Majumdar, B. Burchfiel, H. Dai, and M. Simchowitz, “Diffusion
policy policy optimization,” arXiv:2409.00588, 2024.

R. S. Sutton, A. G. Barto, et al., Reinforcement learning: An
introduction. MIT press Cambridge, 1998.

I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped dqn,” NeurIPS, 2016.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in International conference
on machine learning, 2017, pp. 2778-2787.

S. Still and D. Precup, “An information-theoretic approach to curiosity-
driven reinforcement learning,” Theory in Biosciences, 2012.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and
A. A. Efros, “Large-scale study of curiosity-driven learning,”
arXiv:1808.04355, 2018.

N. Lambert, M. Wulfmeier, W. Whitney, A. Byravan, M. Bloesch,
V. Dasagi, T. Hertweck, and M. Riedmiller, “The challenges
of exploration for offline reinforcement learning,” arXiv preprint
arXiv:2201.11861, 2022.

H. Oh, H. Sasaki, B. Michael, and T. Matsubara, “Bayesian disturbance
injection: Robust imitation learning of flexible policies for robot
manipulation,” Neural Networks, 2023.

D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator
imitation learning via automatically-ranked demonstrations,” in CoRL,
2020.

1. Zisman, V. Kurenkov, A. Nikulin, V. Sinii, and S. Kolesnikov,
“Emergence of in-context reinforcement learning from noise distillation,”
arXiv:2312.12275, 2023.

L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa, “Grasping
with chopsticks: Combating covariate shift in model-free imitation
learning for fine manipulation,” in /CRA, 2021.

L. Ke, Y. Zhang, A. Deshpande, S. Srinivasa, and A. Gupta, “Ccil:
Continuity-based data augmentation for corrective imitation learning,”
arXiv:2310.12972, 2023.

M. Riedmiller, J. T. Springenberg, R. Hafner, and N. Heess, “Collect
& infer-a fresh look at data-efficient reinforcement learning,” in CoRL,
2022.

T. Lampe, A. Abdolmaleki, S. Bechtle, S. H. Huang, J. T. Springen-
berg, M. Bloesch, O. Groth, R. Hafner, T. Hertweck, M. Neunert,
et al., “Mastering stacking of diverse shapes with large-scale iterative
reinforcement learning on real robots,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2024, pp.
T772-7779.

A. Abdolmaleki, B. Piot, B. Shahriari, J. T. Springenberg, T. Hertweck,
R. Joshi, J. Oh, M. Bloesch, T. Lampe, N. Heess, et al., “Preference
optimization as probabilistic inference,” arXiv:2410.04166, 2024.

J. T. Springenberg, A. Abdolmaleki, J. Zhang, O. Groth, M. Bloesch,
T. Lampe, P. Brakel, S. Bechtle, S. Kapturowski, R. Hafner, et al.,
“Offline actor-critic reinforcement learning scales to large models,”
arXiv:2402.05546, 2024.

M. Tschannen, A. Gritsenko, X. Wang, M. F. Naeem, I. Alabdulmohsin,
N. Parthasarathy, T. Evans, L. Beyer, Y. Xia, B. Mustafa, et al., “Siglip
2: Multilingual vision-language encoders with improved semantic
understanding, localization, and dense features,” arXiv:2502.14786,
2025.

T. Z. Zhao, J. Tompson, D. Driess, P. Florence, K. Ghasemipour,
C. Finn, and A. Wahid, “Aloha unleashed: A simple recipe for robot
dexterity,” arXiv:2410.13126, 2024.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” arXiv preprint arXiv:1810.12894, 2018.

	Introduction
	Related Work
	Detecting and recovering from challenging states
	Self-improvement flywheels
	Exploration strategies

	Preliminaries
	Pause-Induced Perturbations (PIP)
	Detecting idling behavior from the policy
	Perturbations and self-improvement using detected idling

	Experiments
	Experimental Setup
	ALOHA simulation task suite
	Real-world connector insertion with a DEX-EE hand

	Baselines
	Policy idling failure mode analysis
	Improving test-time performance
	Better iterative policy improvement data

	Limitations and Future Work
	References

